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Uniaxial elastomers are characterized by five elastic constants. If their elastic m@iutiescribing the
energy of shear strains in planes containing the anisotropy axis vanishes, they are said to be soft. In spatial
dimensionsd less than or equal to 3, soft elastomers exhibit anomalous elasticity with certain length-scale-
dependent bending moduli that diverge and shear moduli that vanish at large length scales. Using renormalized
field theory atd=3 and to first order ine=3—d, we calculate critical exponents and other properties
characterizing the anomalous elasticity of two soft systenis: nematic elastomers in which softness is a
manifestation of a Goldstone mode induced by the spontaneous symmetry breaking associated with a transition
from an isotropic state to a nematic state, &nda particular version of what we call a critically soft elastomer
in which C5=0 corresponds to a critical point terminating the stability regime of a uniaxial elastomer with
Cs>0.
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[. INTRODUCTION Though we are primarily interested in NE's, we also study
a particular version of another class of soft uniaxial elas-
Liquid-crystalline elastomerd—3] are elastic media with tomers in which the elastic consta@t simply vanishes for
the macroscopic symmetry properties of liquid crysfdl$]. energetic or entropic reasons. In this ca8e+=0 is a critical
They consist of weakly cross-linked polymeric networkspoint marking the boundary between the high-symmetry
with mesogenic units. The existence of the rubbery crossuniaxial phase withCs>0 and a low-symmetry sheared
linked network has apparently little impact on liquid- phase withCs<0. In other wordsCs acts like the tempera-
crystalline phase behavior. In fact, the usual thermotropi¢ure variable in a standard thermal phase transition. A com-
liquid-crystal phases, i.e., the nematic, cholestericplete model of this critical point requires the introduction of
smecticA, and smectic© phases have their elastomeric third- and fourth-order terms in the nonlinear strains to sta-
counterpart$3,6]. However, because liquid-crystalline elas- bilize the system whe@s<0. Since this complete model is
tomers cannot flow, they have mechanical properties that difeharacterized by a large number of parameters, it is quite
fer significantly from standard liquid crystals. Usually, complex. Rather than analyze this full model, we consider
liguid-crystalline elastomers are prepared by cross-linkingsimpler model systems, which we call critically soft elas-
side-chain[10] or main-chain[7] polymers. Alternative tomers or CSE’s, defined by simply settifgy=0 in the
methods of synthesis include the polymerization of mono-standard elastic energy of a uniaxial medium containing only
meric solutes in a liquid-crystalline solvef] or the con- quadratic terms in nonlinear strains. Remarkably, CSE’s ex-
finement of a conventional liquid crystal in a dilute flexible hibit well-defined anomalous elasticity much like that of the
matrix such as aerodib]. more physical NE’'s even though they lack the nonlinear
The main subject of this paper is nematic liquid- terms needed to stabilize their low-symmetry phase. CSE’s
crystalline elastomers, or briefly, nematic elastorrBt&’s). are simpler in many ways than NE’s, and the analysis of their
For recent reviews on NE's, see Reff$0,11]. These mate- anomalous behavior provides a useful and instructive tutorial
rials have unique properties that make them candidates fgrelude to the analysis of NE'’s.
device applications. Temperature chah@2] or illumination On the level of mean-field theory, the elastic energies of
[13] can alter the orientational order and cause the elastomé&E's and CSE’s coincide. Therefore, their respective elastic
to extend or contract as much as 400%4]. This qualifies properties are equivalent above their mutual upper critical
nematic elastomers as contestants for use in artificial musclemension 3. For dimensiorts< 3, however, fluctuations be-
[15,16]. Another striking property of nematic elastomers iscome important. These fluctuations lead to Grinstein-
their soft elasticity[17,19—2] characterized by vanishing Pelcovits[22] -type renormalizations culminating in anoma-
shear stresses for a range of longitudinal strains applied peleus elasticity, i.e., in a length-scale dependence of certain
pendicular to the uniaxial direction. elastic constants, with different universality classes for NE’s
The origin of soft elasticity in NE’s is the spontaneousand CSE’s.
breaking of rotational symmetry of the isotropic state in- In the present paper, we explore the anomalous elasticity
duced by the development of orientational order in the nemef NE’'s and CSE’s by carrying out a renormalization group
atic state[17,18. This spontaneous symmetry breaking has(RG) analysis. Using the methods of renormalized field
the consequence that NE's are not like conventional uniaxiatheory [23], we examine the scaling behavior of the elastic
elastomers characterized by five independent shear modutonstants ird=3 as well as ird=3—¢ dimensions. A brief
Rather, the elastic constant associated with shear in planegcount of our work on NE’s appears in RE24]. Our work
containing the anisotropy axigustomarily calledCs) van-  on CSE’s has not been reported hitherto. We will treat only
ishes in NE's. systems in which random stresses are not important. Random
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stresses lead to a different universality class with anomaloughase transition. Our simple CSE model does not include

behavior[17,25 below five rather than three dimensions. higher-order terms in the strain to stabilize the sheared phase.
The plan of presentation is as follows. In Sec. Il we giveWe expect, however, that the full model with these terms

a brief summary of our main results. In Sec. Ill we discussincluded will have the same structure as our CSE model, at

CSE’s. In Sec. Il A we briefly review some elements of theleast forC5=0.

Lagrangian theory of elasticity and then set up a Landau- The inverse displacement correlation functiopvertex

Ginzburg-Wilson elastic energy functionddamiltoniar) for ~ functiong obey scaling forms that can be expressed dor

CSE'’s. As a prelude to the subsequent RG analysis, we ana=3 as

lyze the symmetry contents of this Hamiltonian. Section Il B

contains the core of our renormalized field theory of CSE's. 2

We explain our diagrammatic perturbation calculation and its T g(d, ,Gg) = E L —4p4- "K‘i)dd( Lia, LgOg % LT )

renormalization. By solving the appropriate RG equation, we ' T € e? K M)

ascertain the scaling behavior of displacement correlation (2.29

functions and ultimately that of the relevant elastic moduli.

We conclude Sec. lll by making contact with conventional

uniaxial elastomers by incorporating a small but nonvanish- .49, ,q9)= %Linglf“ mt ¢

ing C5, which leads to semisoft elasticity. Section IV deals T

with NE’s and has an outline similar to that of Sec. Ill. In . [L.q Lyqg C L2
Sec. IVA we derive a Landau-Ginzburg-Wilson minimal ad( S d¢d,—5 - )
model for NE’s in the form of a field-theoretic Hamiltonian. ¢ ¢ K€

Our renormalized field theory for this model is presented in (2.2b
Sec. IV B. The main part of this paper concludes with Sec. V,

where we give concluding remarks. There are five Appen- )
dixes. In Appendixes A, B, and C, we derive Ward identities r _Ca 2p00ncg Lia, LGy Cs LT

for CSE’s and NE’s. An alternative RG approach to NE's is ab(dL 0d) = T L abl " b K s
sketched in Appendix D. Appendix E contains details on the (2.20
calculation of Feynman diagrams.

whereqgq and g, are, respectively, wave numbefsr mo-

Il. SUMMARY OF RESULTS menta parallel and perpendicular to the anisotropy axis.
For the convenience of the reader, we now summarize our
main results before we get into details of our work. n=4ell, nc=cll, n,=¢ll, (2.39

A. Critically soft elastomers |
] ] ) vs=35—¢l28, d=(4—n¢)l2, (2.3b
The elastic constants of CSE’s are defined via the model

elastic energy
wheree =3—d; are scaling exponents. In principle, the ex-

ponents¢ and 7, could be independent of the other expo-
nents. For the CSE model, however, they are not at least to

first order in e. The scaling functionsci)dd(ql,qd,e),
®,4(9, ,0q.€), andP,,(q, ,0q,€) are, respectively, propor-

whereuy andu,, a=1,..d— 1, are, respectively, the direc- tional to i +a3+eq?, d,dq, anquf in the long-
tions parallel and perpendicular to the nematic order andvavelength limit in mean-field theoryb,;, also has a term
Ugg, Uap, andu,y are components of the Lagrangian non- proportional toqﬁ, but its coefficient is irrelevant and we
linear strain tensdr26,27]. The elastic constar@; describes  will not be concerned with it here. The boundary between
longitudinal shear along the anisotroy, couples strains scaling and Gaussian behavior is marked by the nonlinear
along the anisotropy axis to shears in the plane perpendiculéength scales

to the anisotropy axis. The elastic consta@tsand C, are

associated with shear purely in the plane perpendicular to the

H:%f ddLle dxg{C1ufq+K(VIug)?+2CoUgqUa,

+ C3u321a+ 2C4uabuab+ Csuaduad}’ (2-1)

distinguished directionK is a bending modulus. The pure L, ~[VCiK(C,T)I™, (2.4a
CSE system with soft elasticity is characterized @y=0.
The couplingCs plays a role similar to that of the tempera- Ly= mLf (2.4b

ture in a thermal phase transition. Wh€g>0, the system

displays conventional uniaxial elasticity. Wh&x<O0, the

system is unstable with respect to the formation of a lowerwhere T is the temperature measured in units so that the
symmetry(sheareglelastic stateCs;=0 marks the transition Boltzmann constant is equal to 1.

between the two phases. At this point, the system shows The above scaling forms imply the following scaling for
critical behavior analogous to critical behavior at a thermalhe elastic constants:
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C,~C;~C
2o H=3 dleJ_J dxg{Cro g+ K(VZUg)*+2Co0aqvaa
(Lifai)7e if &fa,[>1, qq=0 ) , ,
~{ (Lgqg)™e'? if &lq,|Lq/L,>1, q,=0 +C3v5a+2C5,+ Csvagh (2.12
(Lu&hHre it (q,,99)=(0,0) with nonstandard straing 4= 3(daUp+ dpUa— dalgdpUq),
(2.5  Uda=dgUat 39aUgdpUg, and vaq=3d,Uq and whereCs
goes linearly to zero withh or the magnitude of other
and uniaxial terms.
The scaling of the inverse displacement correlation func-
(Lol if &slq.[>1, g¢=0 tions of NE’s is similar to but not identical to that of the CSE
K~1 (Laa) ™'® if &l [La/L.>1, q,=0, model,
(L& if (9.,90=(00) K o uu
(2.6 Paa(d, o)=L €77
whereés is a correlation length given by < L,q, Lygyq Cs '—i c, 1 )
dd ’ ) v I pllvn ~ poe o
£s=L, (L2Cs/K) "5, 2.7 6 em TR eTC, ere
(2.133
The elastic constanC; is not renormalized and it is not
singular in either the wave numbers &. WhenCg is non- 20 1) —1,148
zero,['yg~Cl%q? +Kq! at smallg, where ys=(2— 7x) vs Pag(qy o)=L "La ¢
andK is given by the last expression in EQ.6). )
At exactly three dimensions, the above power-law singu- <& L9, LgGg Cs LT
larities become logarithmic singularities, ad\ g g K )
Co~Ca~Cy~IIn(|a, |/ )|~ (2.89 (2.130
C
K~IIn(la. [/, (2.80 Tab(d. Qo) = — L °¢?
where i is a wave-number scale. This logarithmic anomaly L2
can be observed fof, |q, |<1, where <& Liay Lg9a Cs LT &WC
Wt K e )

& =u texd 32mCK3/(TTCy)]. (2.9 (2.139

In the critical regime at smalCs, we find the following  \yhere. to first order ir
universal Poisson ratios:

—38¢/59, yo=4el59, (2.143
C2(C,C)=0 and C4/C,=—3.  (2.10 7K e

¢=2—21¢/59, v,=1/2+9¢/108, (2.14b
B. Nematic elastomers

At the transition from the isotropic to the nematic phase,and
liquid-crystalline elastomers undergo an anisotropic stretch L, ~[VK3/(C,T?) Y, (2.153
relative to their isotropic reference state of a factgy along
the nematic axis and y, perpendicular to it. In the absence L= \/mLf- (2.15H

of explicit uniaxial terms such as
Note that four independent scaling exponents, 7c, ¢,
, (2.11) and v, are required to describe NE’s with a small uniaxial
energy. In the above, lengths, displacements, @nectors

h f ddix, j dxg
the elasti f th tic oh that f i are measured in rescaled units.
€ elastic energy of tné nematic phase that forms spontane- 1, 44,/6 scaling forms predict thag, C,, andC; are

ously from an isotropic phase is soft, i.e., the elastic constant, .enormalized and that
Cs for shears in the uniaxial plane vanishes. After rescaling

1
Uda— ani

lengths measured relative to the anisotropic nematic refer- (L la. D7 if &g =1, qq=0

ence state and displacements accordingXfe-X,, Xq neld B
—\r—1x4, Us—U,, and ug—+r—1uy, where r Ca~1 (Lgda)7e'® if &la [Lg/L,>1, q,=0
=A5/A5,, the relevant parts of the elastic energy can be (L, & H7e if (q,,94)=(0,0)

written when uniaxial terms are present and small as (2.16
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as well as derstand: different physical orientations of the same sample
B ) have the same enerd?9]. As is customary, the reference
(Lila )~ if &pla,[>1, gq=0 state, relative to whiclu is defined, is taken to be in me-
K~{ (Lgda)~"'? if &la,|Lg/L,>1, @, =0 chanical equilibrium, and hence no terms lineauinappear
.- . B in the stretching energy. To lowest order, the stretching en-
(Ligy )" if (a,,d4)=(0,0) ergy is then of the form
(2.17
with é:h given by HSt:%f ddX Kijk|uijuk|, (32)
&=L, (L?h/K) ™", (2.18

whereKj is an elastic constant tensor. For media isotropic
At small but nonzerd, I' yq~h"nq? + Kq? at smallg, where  in the reference space, for example, there are only two inde-
vn=(2— m1) v, andK is given by the last expression in Eq. Pendent elastic constantsky that are known as the Lame

(2.17). coefficients\ and . Media with uniaxial symmetry in the
At exactly three dimensions, the above power laws bereference space are characterized in general by five indepen-
come dent elastic constants. Assuming that the anisotropy axis is in
the &=(0,...,1) direction, we may write the stretching en-
Cu~|In(|q |/ )| 4%, (2.193  ergy as
K~|In(|q, |/ )] 38° (2.19H L

Hstzif ddLXLf dXgf C1UGgt 2CoUgdUaat Caui,
The length scale that marks the crossover from harmonic to
logarithmic behavior is +2C,4ul,+Csuy (3.3

& =u texd 647 \K3/(7/6C,T)]. (220  withd, =d—1 anda,b=1,...d, .
) ] N ] ) Now suppose that the elastic const&y vanishes. Re-
~ Provided thaCs is small, the critical regime entails four \yriting H, in Fourier space, one sees easily that the stretch-
independent Poisson ratios, ing energy cost is zero for phonon displaceméi(ts) per-
_ _ _ pendicular to&; with momentumq parallel to&; and for
C2/Ci=1, G4/Cy=1, C4/Cy=0, (2213 Ti(q) parallel to &, with q perpendicular to&;. In other
words, CSE’s are soft elastic materials.
For many elastic systems it is justified to neglect energetic
contributions, such as bending, that are associated with
. CRITICALLY SOFT ELASTOMERS higher derivatives of the displacements. That is because
A The model bending is unimportant compared to stretching at small mo-
menta. Due to the soft elasticity, however, the stretching en-
We start by setting up a field-theoretic minimal model for ergy of CSE’s can vanish, and hence bending is important.
CSE's that is suitable for our subsequent RG analysis. We For the moment, we set aside the uniaxial term propor-
find it convenient to use the Lagrangian formulation of elas+ional to C5 and concentrate on the pure soft case. The ef-
ticity [26,27). In this formulation, the mass points of the fects of a small but nonvanishin@s will be included later
equilibrium undistorted medium are labeled by their positionon. Taking into account stretching and bending, the CSE
vectorsx in d-dimensional(referencg space. When the me- model is defined by the Hamiltonian
dium is distorted, a mass point originallyxats mapped to a
new pointR(x) in d-dimensional(targe} space. Sinc&R(x) L g ) 2
=x when there is no distortion, it is customary to introduce Hzif d inf dxg{C1ugq+K(ViUg)“+2CsUgdUaa
the phonon variable(x) = R(x) — x that measures the devia-
tion of R(x) from x. +CaUd, 1 2C4Ugplap}, (3.9
Suppose for a moment the medium is distorted solely by
stretching. The energy of the distorted state relative to thavhereK is a bending modulus. All other bending terms al-
reference state depends on the relative amount of stretchidgwed by symmetry turn out to be irrelevant in the sense of

dRZ_dXZZZUijdXide . Where the renormalization group. Also, not all parts of the strains
are relevant. Discarding any parts of the strains that lead to
ujj=z{diuj+ d;u;+ diudjui} (3.1) irrelevant contributions to the Hamiltonian, as discussed fur-

L _ ther below, leaves us with
with i,j,k=1,...d [28] are the components of the familiar

nonlinear Lagrangian strain tengor Note thatu is invariant Ugp= %{aaub+ IpUat+ daUgdpUgt (3.53
under arbitrary rotations in target space. This feature makes

the Lagrangian strain tensor an adequate variable for formuand

lating elastic energies because all elastic media are rotation-

ally invariant in target space. This invariance is easy to un- Ugg= dgqUq - (3.5b
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In principle, we could usé{ as it stands in Eq3.4) for our  The terms carrying extra powers pfdo not contribute to the
RG analysis. We find it convenient, however, to reduce thdeading behavior in the limix— 0. Hence, they can be ne-
number of constants featured H at the onset. To this end, glected in studying the long length scale behavior at leading
we rescale u,—(K/Cyu,, ug—+K/Cuuyq, and x4  order, i.e., they are irrelevant in the sense of the RG.
—(C4/K?)x4. Then the Hamiltonian takes on the form Second, due to the anisotropy of the model, we may res-
cale the longitudinal coordinate alonexy— BX4. Scale in-

variance is retained ib— B°w, g— B8g, andT— BT (B in-
Hz%f ddlxif dxg{wufg+ (VFug)?+2gUgquaqt fui, variance. Note that the composed couplings
+ 2UapUap} s (3.6 o=¢%w, p=f, and t=p T/ (3.9
where

are invariant under the longitudinal rescaling. The factor
A a I is inc_luded in the definition of to ren_der it, likeo and
w=CiK%/Cy,  g=Cy(K/Cy~% f=C3/Cys. (3.7  p dimensionless. As we go along, we will see thap, and
t emerge quite naturally in perturbation theory. Thitd,is
At this stage we would like to point out that we explicitly invariant under the rescalingg— ugq+ f4(x,), wherefy is
keep the temperaturd in the Boltzmann weight exp an arbitrary function of the transversal coordinate.
(—H/T) [30] governing our field-theoretic calculations. In Fourth, rescalingi,— u,+ f,(Xg) + M 4%, leavesH invari-
what follows, we carry out a perturbation expansion in theant if the matrix constituted by the ,,, is antisymmetric and
temperature, i.e.J serves as our expansion parameter. As & is a function of the longitudinal coordinate only. Finally,
consequence, not only the constants and fields featurgd in 7{ is invariant under the transformatian,— u,+ 64uy and
but also the temperature will require renormalization. Ug— Ugq— 0.X, provided that the#s are small. Note that this
An effective Hamiltonian fouy alone can be obtained by transformation mixes the longitudinal and the transversal
integrating out the transverse variahig from the full CSE fields (mixing invariancg. It can be viewed as a remnant of
Hamiltonian of Eq(3.4). WhenC,=<, this process leads to the rotational invariance of the original theory in target
the Hamiltonian for a smectié-liquid crystal whose anoma- space. This mixing transformation will be valuable for us
lous elasticity was analyzed by Grinstein and Pelcd@®.  because it leads to Ward identities that reduce the number of
Our rescaling of variables to obtain E@®.6) with the coef-  vertex functions to be calculated in perturbation theory.
ficients of both ¥2uq)? and u,,u,, Set to unity is not These Ward identities will be derived in Appendix A.
ideally suited to taking th€,=cc limit. Our primary interest
is the anomalous elasticity unique to soft uniaxial systems
for which the parametrization of E3.6) is appropriate. We ) ) _ ) i
will not give further consideration to the Grinstein-Pelcovits I this section, we determine the scaling behavior of the
limit of our model. correlation function of the fieldsi,(x) anduy(x) by using
As a further step towards our RG analysis, we now disPerturbation theory augmented by renormalization group

cuss the scaling symmetries of our model. First, under a gloethods. As usual, we analyze vertex functions that require
bal rescaling of the coordinates,—u 'x, and X4 renormalization due to the presence of ultravidléV) di-

— 1" 2x4, we find a scaling invariant theory provided that Vergences in Feynman diagrams. Our main tools in this sec-
U pu, and T— w3 9T (4 invariance. Viewing u as an tion will be dimensional regularization and minimal subtrac-

inverse length scale, this means that the fig|chas a naive tion. To avoid infrared(IR) singularities in the Feynman
dimension 1 and that the naive dimensionTok &=3—d. diagrams, we supplement our Hamiltonian with a mass term,
The fielduy and the remaining parametersffihave a van- -
ishing naive dimension. Abové=3 dimensions, the naive H—H+ Ef ddinJ dxqu?. (3.10
dimension ofT is negative and is irrelevant, whereas it is
relevant belowd= 3. Hence, we identifyl.=3 as the upper ) )
critical dimension of the CSE model. At the appropriate stage of the calculations, we then sémt

At this point we take a short detour and catch up on jusZ€ro to recover the original situation.
tifying the truncation of the strains as stated in E@&5). _ _ _
Applying the u rescaling to the original full strains leads to 1. Diagrammatic expansion

In order to set up a diagrammatic perturbation expansion,
we have to determine its constituting elements. First, we
have the Gaussian propagai@rthat has the form of al

(3.8  xd matrix. The elements of its inverde are readily col-
lected from the Hamiltonian,

B. Renormalization-group analysis

2
m
Uab— 5 {dallp t dpUa+ daladpla+ 12 daUcdpUch

and
Tga=T Y7+ wgi+q?], (3.113
2 4

" n
Ugg— 1) dgUg+ 7(5dud)2+—(9duc9duc . (3.8b

2 Fad:T_lg%q(ﬁ, (3.11b
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Q
o

Pap=T "[(f+1)dalp+ 5207 ]- (3.110 Y T T
Inverting [, we find that the Gaussian propagator has the‘j’*\\ /f—t_ ';l'*\\ /,F'l;' ‘j’*\\ /,'"l;'
elements b/\ -/\a d/\- _/\b d/\ _/\d
Go_T B (3 1za a\’_ 5 b a - b’ a’\’_ 5 b
49 " Br+Agi+BgT’ ' 4o K-F- call s ealed K-F-
_g q q a “'_,X b a X\__,X b a “’_,X b
G..= a d' (312t) a b a b a b
ad” ' Br+Agi+Bgt ¢ “ T o o
Sap D7+Cai+Da} g0y _+k Feot oo
Gup=T - . (3.129 a a N b a a X b a b
° af_ BT+Aq§+BQi1 Qi a /Xb a /\b' e '>\b'
where we have used the shorthand notatidrsw(f+2) e e dx" el
—g% B=f+2, C=w(f+1)—g? and D=f+1. Second, iy I N k-
our diagrammatic expansion features the four vertices a ‘/ \' b a 'y \' b a ‘/ \’ b
a T b a e b’ a T b
9
q(l)q(Z)q(3) (3.133 dx’_ _\Xb dx’, - b aX’-?><
f 44 )JF T = i . =
. a » b a /b a /b
I qul)qéz)qgs) ; (3.13b a/\‘ v a/\ T d/\_ -’\b'
d_ ____ ¥ a  __.__ ¥ a_ b
XX XX foilie!
| =qa g, R N A U A s
a X\ b b a X\ b b a X\ ,X b
a b d b s b
-2 g ‘a’ (3.13d X TN “NTIX
8T “a Ha b : a b N ,\ %&
_ I R S & U & SIS U
It is understood that the sum of the momenta has to vanisha « s« v & a e X b a s X b
each vertex. a 0w a T o» @ T

Next, we need to determine which of the vertex functions
I'™N with M externalu, legs andN externaluy legs are
superficially UV-divergent. Analyzing their topology, we find
that the superficial degree of divergengef our diagrams is lines with two indices, say andb, visualizeG,,,. The ticks indi-

given at the upper c_ritical dimension b§:_4—_M — 2D cate derivatives with respect to the reference space coordinate with
—D,, whereD (D,) is the number of longitudinaltrans- 5 index specifying the component.

versa) derivatives on the external legs. Thus, the only vertex
functions containing superficially divergent diagrams are BT
9°dq

FIG. 1. Feynman diagrams contributing It4. The dashed
lines symbolize the eleme@,q of the Gaussian propagator. Lines
half dashed and half solid with an index, sgystand forG,4. Solid

Fgo,l), Fgm)' 1“3%'2), 1"(1 1 F(z 0), Ffﬁﬁ), F%’ﬁ), and FO2 =T 7+ weltqt]— el
r{%&,. All these vertex functions have to be taken into ac- 16me\—g?+(2+f)w
count in the renormalization procedure. By virtue of the mix-

ing invariance, however, there exist several relations between 3(1+f)a! a

the vertex functions in the form of Ward identities. These are  8me P2+ iV=g?+(2+f)w ’ (3.143

derived and stated in Appendix A. Due to these Ward iden-
tities, it is sufficient for our purposes to actually calculate the
two-point functions" (%2, T4V, andI' 3. Once the equa-

VZHIH )08,

I =T"190,q4—

tions of statel'{™ l)—0 and I“gl'o):O are satisfied and the 16me -9+ (2+f)w
two-point functions are renormalized, the Ward identities (3.14b
guarantee that the remaining vertex functions are cured of
their UV divergences. T 20— T (f+1)quqp+ Sand’]

We calculate the two-point vertex functions to one-loop
order using dimensional regularization. The Feynman dia- \/2+ [2(1+f)29,40p+ 62597 ] e
grams entering this calculation are listed in Figs. 1-3. De- 32me -0+ 2+ D)w :
tails on computing the diagrams can be found in Appendix E. TENTY @
Our results for the two-point functions read (3.140
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a’ _ - b a _ d a .. ¥ a  _.._ b a  _.._ a
XX XX X T T
I, \\ I/ \\ a \ ,}Ibai=\ )Ibali\ ; b
Lo Fbe S U S
, a v @ v a b
D S D S o
a b a b ’X X\
. . . . a \ ; b
FIG. 2. Feynman diagrams contributingligy. The meaning of L N
the symbols is the same as in Fig. 1. d T Ty

As already indicated by the vertex functions’ superficial de- ~ FIG- 3. Feynman diagrams contributingtg, . The meaning of
gree of divergence, higher-order terms in the momentum ex'e symbols is the same as in Fig. 1.

pansion are convergent and hence can be neglected for our o : .
purposes. Likewise, contributions proportional to the mass 'enermalization theory, cf. Ref23], that this procedure is

are convergent. Thus,does not require renormalization and sunabflle.tcl) ellmlfnate all the UVfdwergencﬁsotbonIydthe.
consequently its scaling dimension is identical to its naiveSUPerficial onesfrom any vertex function order by order in

dimension 4. At this stage of the calculationhas fulfilled ]E)ertturbation 'theorg/. To one-loop order we find that @ur
its purpose, viz., it prevented IR singularities from producing actors are given by
spuriouse poles. In conjunction with the expansion, we

can now safely send to zero. Z=1+t 14+ 1% (3.183
32me\2+p\2+p—0
2. Renormalization
The UV divergences have their manifestation in the B 3(1+p)
poles appearing in Eq$3.14. We eliminate these poles by Zr=1-t 8meN2+p\2+p—o (3.180
employing the renormalization scheme
ug—lg=2"uq, (3.153 ST R Ll (3.180
© 16me\2+p—0 '
Uy 8= Z U, , (3.15H P
. V2+p(1+p)
T-T=27;'T, (3.150 Zg=14+t ———, (3.189
8me\2+p—0o
0—0=277 0, 3.15
- T ( 9 . 1+t\/2+p(1+4p+2p2) (3.180
g—8=2"1227'7,g, (3.15¢ ' 2me\2+tp—0 '
ff =Z_1ZT_ 1fo, (3.15% 3. Scaling 1: RG equation and its solution

Next, we infer the scaling behavior of a vertex function
om a RG equation. This RG equation is a manifestation of
the fact that the unrenormalized theory has to be independent
of the arbitrary length scalg ~* introduced by renormaliza-

where the overcircle indicates unrenormalized quantities
Our scheme is chosen so that the Hamiltonian retains it
original structure,

H 1 tion. By virtue of this independence, the unrenormalized ver-
?_’ﬁf ddixif dxg{Z,wUig+Z1(VZug)? tex functions satisfy the identity
2 (9 o o o
—I—ZZggudduaa-l—fouaa-l— 2ZTZUabUab}. (316) MJF(M’N)({C{L 1qd};&);T1©;f):O- (319)

The simplest way of determining the renormalizatiofac- . ' . _ '
tors is minimal subtraction. In this procedure, thdactors ~ The identity(3.19 translates via the Wilson functior81]
are chosen so that they solely cancel ¢hgoles and other-

wise leave the vertex functions unchanged. Expressed in v = ilnz (3.203
terms of the effective couplings introduced in Sec. Il A, our TR du 0’ '
Z factors are of the structure
“ X™(t,0,p) ¢ 7w (3.200
. \Lo,p =M =Y Yo .
Z (top)=1+ X ————. (317 oty T
m=1 €
at

The X,(,”,’)(t,(r,p) are expansions in the effective temperature Br=p—
t beginning with the powet™. It is a fundamental fact of d

=t(—e—y+zyr+tiv,), (3.200
0
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Jo
Bo=m—| =o(y+tyrty,—2yy), (3.200
[ 0
ap
Bp=wr7 - =p(y+tyr=y1) (3.20¢
Ml

into the Gell-Mann-Low RG equation

N (M,N) . .
D/,L_ M + E Y r ({qL ,qd},w,t,o,p,u)zo.
(3.21)
Here we have used the shorthand notation
D, = J + J + (9+ J + J 3.2
,u_lu“aM wg&w ﬁt&t ﬁ(rao_ Bpap ( . 2

The Wilson vy functions are easily gathered from the
renormalization factors stated in Eq8.18 upon reexpress-
ing w(dlon) as Bi(dladt). Because the Wilson functions
must be finite, one then immediately gets

y..(t,o,p)=—taXP(t,0,p), (3.23

whereX!) is defined in Eq(3.17). Since we will need them

PHYSICAL REVIEW E69, 021807 (2004

P
4 %F(€)=ﬁg(7(€)5(5)3(€)), a(l)=o,
(3.25¢
J__ — _ _ _
4 %P(f)=ﬁp(t(€),0(€),p(€)), p(1)=p.
(3.25f)

These characteristics describe how the parameters transform
if we change the momentum scale according to u
—u(€)={un. Being interested in the IR behavior of the
theory, we focus on the limi€ — 0. In this IR limit, we find

that the set of coupling constaritg ¢),o(£),p(f)) flows to

a stable fixed point,

327e 1
(t*,0*,p*)= (—7 ,0,— 5) (3.26
satisfying B(t*,0*,p ) Bo(t*,0%,p*) =B, (t*,0%,p*)

=0. Recalling thate=g% w and p=f, we learn that the
stable fixed point implies two unlversal ratios of the elastic
moduli (Poisson ratios

to determine the fixed points of the RG flow, we state the

Wilson B functions explicitly,

20+1%9—20—po

=—te+t? (3.24
P 3202+ p\2+p—0 ?
Bt V2+po(3+4p—20) (3.248
7 2m\2+p—0a '
2+7p+7p*+2p3
- PP TP (3.249

F=t 327\2+p\2+p— o

To solve the RG equation, we employ the method of char-

acteristics. We introduce a flow parameterand look for
functions u(€), Z(€), w(€), t(£), o(£), andp({) deter-
mined by the characteristic equations

o€
¢ ’;;Lz. A= p, (3.253
d — _ _
(= INZ(0) = (0, 500),510), Z(1)=1,
(3.25h
J _
(= Inw(0)=(H0,5(0.50), o(1)=w
(3.25()
Jd— _ _
(=10 = B0, T00),510), T(1)=
(3.250

C3/(C,C,)=0 and C3/C,=—13. (3.27

Note that the longitudinal and the transversal directions are
effectively decoupled at the IR stable fixed point. In addition
to the stable fixed point, there are four unstable fixed points,
viz., the zero-temperature fixed point=0 as well as
(32me,0,—1), (64y2/3we/13,1/2;-1/2), and (32/2/37e,
—-1/2,-1).

With the help of the characteristics, the RGE is readily
solved, at least formally,

V{a, adb @t a,0,0)
—Z(f) (M+N/2)
XTMN({q, ,qa};o(€),t(€),5(£),p(£), ul).
(3.28
As it stands, Eq(3.28 does not account for the naive di-

mensions of its ingredients. Recalling thenvariance of the
Hamiltonian?, it is straightforward to check that

r™Ndq, a4t 0.t,0,0,1)

— ,,—(d+1)+dM+(d+1)N
=u ) (

erN)((

Moreover, theg invariance tells us that

a.

qd] w,t,a‘pl) (3.29
"
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r’™Nda, ,q¢h0.t0,0,u0)

[Ch , %] ;ﬁzw,t,(f,p,,u)
MN{a, 041t 0,0,m),
(3.30

where the last line reflects our freedom to chog8e
=w 2. Combining Eqs(3.28 and(3.29, we find that the
scaling behavior of the vertex functions is described by

r™Nq, ,qqho.t0,p,u)
:(Mg)—(d+1)+dM+(d+1)NZ(€)—(M+N/2)

:B(M+N—1)F(M,N)

— o~ (MEN=1)2p(

A da |,
XFMN)HM (M))

EMXHDERH$W%M4. (3.30

Due to Eq.(3.30, we may also write

r™Niq, ,qeho.t0,p,u)
= (g)~ (@D FAM (@ INZ ()~ (M+NP2)

Xa(f)f(MJrN*l)/Z
XF (M, N)({ qL (,()(€ 1/2qd]
pt’ (u)* |’

1R€),E(€),3(€),M). (3.32

We have to mention that Eqé63.31) and(3.32 do not cor-

rectly describd’ (2 at q, =0 because we omitted a danger-

ously irrelevant bending of the tynédqﬁ. Without such a
term, Egs.(3.31) and (3.32 unphysically suggest that the

r™Nia, ,q¢0.t0,0,0)= =

PHYSICAL REVIEW E 69, 021807 (2004

leading scaling behavior df %% is independent ofyy for

g, =0. In other wordsK is dangerously irrelevant as far as
the leading behavior df 3% atq, =0is concerned. Because
Ky is irrelevant, its omission has no impact on the leading
behavior of the relevant elastic constants and hence does not
affect our main results. Of course one co(dahd it would be
interesting t® investigate the scaling behavior &f;. One

has to keep in mind, however, that irrelevant terms tend to
mix under renormalization with a whole bunch of other ir-
relevant terms, making a proper RG analysis a tedious en-
deavor. This will be left to future work.

4. Scaling 2: Physical quantities

The variables we considered so far in our RG analysis had
the benefit of being convenient. The flip side of this conve-
nience is, however, that the featured quantities have no direct
physical meaning. Now we recast our results so that their
physical content becomes pronounced.

To have a clear distinction between physical variables and
the scaled variables we used in our calculations, we mark the
latter in the remainder of this section with a hat, i.e., we
denote

C4 ~ C4 ~ C4
qu= Kk29d:  Up=7~Ua,  Ug= "\ Uq. (3.33

It is not difficult to see that the relation between the physical
vertex functions and the vertex functions in the scaled vari-
ables is given by

r™%da, .ade.to.p,m)
— KM#3NR2-2CL-NRREMN (1 - b w0, ).

(3.39

Blending Eq.(3.34 and our findings of Sec. IlI B 3, we
now obtain

1
_Cl—(M+N—2)/2C£12M+N—2)/2K—(M—2)/2Li(d—l)—dM—(d+l)N

X ¢~ (@+ 1 +dM+(d+ DN ) /w]—(M+N—1)/2Z(€)—(M+N/2)

X@MN)([

where we introduced the susceptibilities

LLq{ Vw(e)/wL“qd}, 1R€),E(€),3(e),1), (3.35
[
C, C
LdZF;/L—ZZ \/%Lf. (3.379

HOMN — (PN (3.3

to make explicit that the vertex functions are proportional toAt this stagel, andL are still arbitrary. Further below we
the inverse temperature. Moreover, we introduced the lengtWill fix these length scales so that they acquire a physical

scales

Lo=p L, (3.373

meaning, viz., the borderline between harmonic and scaling
behavior. Note that the resul8.35 is general in the sense
that it holds in the harmonic as well as in the scaling limit.
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Whent_(l)wo, the system behaves approximately like a har- Cy(l)= Cse—SZ(e)—Z[t_(g)/t]—l[a(g)/w]—lfz,

monic system. Whet is small, behavior is determined by (3.43p
the fixed point witht* ~ .
Now to our main goal, viz., the behavior of the elastic Ca(€)~C5(£). (3.430

constants. The sought-after behavior can be inferred without ) ] )
much effort from resul(3.35. As an example, we consider 10 obtain the equation fo€,(£), we used the fact that it
the caseM =0,N=2 in some detail. In addition to the infor- Must be proportional t&, and thus_to<rl’2. ‘Note thato

mation contained in Eq3.35, we need some knowledge on affects the leading behavior &f, despite flowing to zero. In

. 2002) o . other words,o is a dangerously irrelevant variable. Similar
the concrete form of the scaling functidf;? . Sincet* is arguments folC imply that C4(¢) must be proportional to

of ordere, it is reasonable to assume thbfy” can be ap-  p, which reaches a nonzero fixed-point value. There are,
proximated by its Gaussian forfof. Eq.(3.11] even inthe  therefore, no contributions to the scaling®§ from danger-
scaling limit. Hence, we write ously irrelevant variables.

&)(0’2)( : Loa, Va(g)/wl-dqd]
dd ¢ €2

5. Behavior of the elastic constants in<d3

;1R€>,E<€>,W),1) _ _ _ _
For >0, we can assign a physical meaning to the hith-

SNTAYPR 2 4 erto arbitrary length scale, via the definition of our dimen-
( wMZZdeqd) + ( LquL) (3.39  sionless temperaturte viz.,

C,K3t\ ¥
C.T '

Merging Eqs.(3.38 and(3.35, we obtain the physical ver- L, = (3.49

tex function
02 . ) 4 Of course, this choice also affects the length sdale cf.
Fad”(a,09) =T H{Ca(O)ag+K(O]a. "t (3.39  Eq.(3.37. The length scaless, andL, mark the borderline
between harmonic and critical behavior.

with Below three dimensions, the solutions to the characteris-
e 1 - 1 tics are for{<1 governed by the IR-stable fixed point.
K(€)=KeZ(€) " TtOt] Ta(€) 0] Readily, one finds the power laws
(3.403
Z()=¢"", (3.453

C1(0)=Cyt°Z() " [t(O)/t] Yol 0)/w]*2
(3.40p w()=wtt, (3.45h

In the case of the bending modulus, we cannot finalize ougyhere
conclusions without solving the characteristics, i.e., without

knowing Z(¢) and so on. ForC,, however, we observe y* =y(t*,0%,p*)=—5el7, (3.450
without further information the following:
F={(t*, 0%, p*)=4elT. (3.450
£ %01(5) =—g—y— %Jr g: Y- (3.41  From our discussion above, it is clear that we cannot simply

seto(€) equal to its fixed-point value™ =0 becauser is a

. . . . . i dangerously irrelevant variable that effects the scaling be-
Since vy, is proportional too it vanishes at the stable fixed havior of C, at leading order. The vanishing of is de-
point. HenceC, is independent of. In other wordsC; is  riped by

normal. Of course, we cannot tell from our analysis if this
stays true beyond one-loop order. Nevertheless, this may o(l)~at", (3.458
well be the case.

The behavior of the remaining elastic constants can bavith a Wegner exponent= /7 corresponding to the small-
extracted by similar means from the other two-leg vertexest eigenvalue of the Hessian of the flow netr, §*,p*).

functions. We find Combining the formal sc_aling form of E¢B.35 with the
" L power laws of Eq(3.45) for Z(¢), w(£)/w, ando(£)/o and
T?(a,,09) =T 1Cy(£)q40q. (3423  the crossover length scales as given in E(&44 and

(3.37h, we obtain a complete picture of the scaling behavior
I'29(q, ,qq) =T HC3(€£)qals+ Ca(€)(qalp+ S5/, |2} of the displacement vertex functions @< 3. In particular,

(3.429  We obtain Egs.(2.2) for the two-point functionsI"{}?,

'Y, andl' (39 with C5=0 featuring the scaling exponents

with the anomalous elastic constants
. . n=e+y*+*12=4¢l7, (3.46a

Co(€)=Cot 2Z(€) ¥ t(0)/t] [a(£) o2
(3.433 Ne=—e—2y*—{*12=¢l7, (3.46b
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no=—e—3y*12+W/2=¢/T= ¢, (3.460 by incorporating a small but nonvanishiitg. As a conse-
quence, we find semisoft behavior.
p=2—(*12=2—2¢&[T=(4— 5¢)/2. (3.460 Technically, we treaiCg as a perturbation to the CSE

model. It turns out that this perturbation is relevant in the
Thus, even though there are three independent exponergense of the RG. This situation is analogous togfenodel
v*, *, andw, the scaling behavior of the two-point func- where a deviation from the critical temperature represents a
tions is determined, at least to first orderdnby only two  relevant perturbation. Our central task will be to determine
exponents, sayx and c. Upon inserting the power laws the scaling exponent that governs the departur€pfrom
(3.45 into Egs.(3.43 and (3.409, we obtain the scaling zero.
expressions foC,, C5, C,, andK stated in Egs(2.5) and Our analysis here is based on the full Hamilton{2ri).
(2.6) of the review section. Note tha{ diverges at long Carrying out theu rescaling, it is straightforward to see that
length scales whered&s,, C5;, andC, vanish in this limit. not the entire straimi, 4 is relevant and that it is sufficient to
keep
6. Logarithmic behavior in d=3
. . . . . Uag=3d,Uq. (3.52
Sincee vanishes ind= 3, the solutions to the characteris- ad™ 2%"d
tic equations are no longer of power-law type. The flow of ; ;
the temperature, for example, is described at leading orde@ﬂpm?gr:he rescaling that led us from E@.4) to Eq.(3.6),
i.e., forg(£)=0c* andp(f)=p*, by

e
o= H=H+—fddix fdxé’uau , 35
C—t(4)= (€)% (3.47 e 2 1 49aUgdalg (3.52
ot 32

with H as stated in Eq3.6) and wheree=C;/(4K). Note
thate~ u?, i.e., the naive dimension &fis 2 and hence is
1 clearly relevant.
(3.49 The Gaussian part 6f, has an extra term compared7b
and hence the Gaussian propagatofHafis different from
o - _ o _ that of H. Here, anyg! in Egs.(3.12 has to be replaced by
Similarly, we find Z(¢)~[t(£)/t]™°", w(€)~[t(€)/t]"", g’ +eqg?. The non-Gaussian terms #f, and’{ are identical
ando(€)~[t(¢€)/t]*" at leading order. Inserting these loga- and hence we still have the four vertices stated in E3j43.
rithmic solutions into Eqs(3.408 and(3.43), we find that To investigate the departure efrom zero, we expand the
propagator to linear order i@ Then this expanded propaga-
tor is used in our diagrammatic calculation. Of course, at
zeroth order ire we retrieve our vertex function8.14). The
first order in the expansion leads to an extra divergent term
-7 in I'%? that is proportional toeg?. To remove the extra
., (349D divergence, we introduce an additional renormalization fac-
tor via setting

This differential equation is readily solved with the result

1(0)/t=

1 7t| 14
—@n()

417
, (3.493

7t
K(QL)NK{]-_ Eln(l-ﬂ(hb

7t
CZ(QL)NCZ[l_ ﬁln(LJQLD

C3(a1)~Cy(a,)~Co(qy). (3.490

Of course,C, is normal as it was ird<3. Once moreK
diverges at long length scales a@id, C5, andC, vanish in

e—&=277Ze. (3.53

From the diagrams depicted in Fig. 1, we extract that

this limit. 6+5p+ p2
Note that Eqs(3.49 imply the existence of a nonlinear 7 =1—t pTp _ (3.59
crossover length scale, viz., ¢ 16me\2+p\2+p—0o

L 32
£ =L, ex 7t

For &, ]9, |=~1, the anomalous elastic constants are approxi-{D +eyd _( M+ E y
mately harmonic whereas one has clearly anomalous behav{ ~* ¢ 2
ior for £,]q, |<1.

32m\/C,K3 The RGE for the vertex functions expanded to linear order in

r™MNUq, a4 0.t,0,p.6,1)

=0 (3.59

7. Cs as a relevant perturbation—Semisoft elasticit . .
> FEIEpEEEE I ey with D, as stated in Eq(3.22 and

Up to this point, we have excluded a term proportional to
Cs, cf. Egs.(2.1) and(3.3), from the elastic energy of CSE's p=pd, Inelo=yr—7ve. (3.56
because such a term destroys the soft elasticity. Now we
establish contact to more conventional uniaxial elastomerSetting up a characteristic fey
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J _ o The second limités|q, |>1 corresponds t€s— 0, and we
€-gInelO)=y(t(6),a(€),p(0)), e(1)=e, must obtain the same scaling forms as we obtainedCtpr
@357 =0 with a correction term that vanishes witks[q, |) ~ 5.
As we stated earlier, we have not included nonlinear terms
we find that this coupling flows id<3 as in our model HamiltoniadEqg. (3.4)] that are needed to sta-
bilize the system wherC;<0. In particular, we have not
) ~el”, (359 included terms GaqUad)®~ (daUgdalg)?  UaaUpaUpd.
UapUagUpd, UaaUbdUbd: UapUcdUed, aNd UgaaUpcUpglcg, all
where ¢* = y(t* ,0* ,p* )= —&/7. Now, the solution to the Of which have the same naive scaling dimension as the har-
RGE (3.55 in conjunction with dimensional analysis tells us Mmonic terms in nonlinear strain that we retained in B34).
that the scaling behavior df{’2) expanded to linear order in OUr expectation is that the general theory in which these

eis given by terms are included will have the same general form as the
present theory with, however, a different stable fixed point
r'%(q, ,qq;0.t,0,p.8,) with, in particular, a nonzero value of the coefficient of
(UagUag)?. At such a fixed point{d,uy) will develop a non-
=(u)*°z(£) T2 zero value at negativ€s that scales as—Cs)?, where g
. =(1+3%y*)vs. This result can be obtained by observing
S TR (0) 1), 518) 06) e(t) that Eg. (3.39 for I'®? implies #2Ggq(Xq.Xa,Cs)

pl’ (ut)?’ ’(,W’f)z'1 ' =27 252G (0% 2x g 0%, €T ¥5Cs), whered, is a de-
(3.59 rivative with respect tofx,, and that Gy4(Xq4,Xa,Cs)
—(dalg)(dallg) 8SX—0.
Next we switch back to physical variables. By performing
much the same steps as in Secs. Il B5 and Il B 4, we obtain IV. NEMATIC ELASTOMERS

for d<3 , ) ) ) ) .
Usual NE's are either cross-linked in the isotropic or in

K the nematic phase. If synthesized in the isotropic phase, the

l“f,?j'z)(ql ,0q:;€)= TLI4€4’ 7K uniaxial anisotropy arises via a spontaneous symmetry
breaking at the isotropic to nematic transition and is associ-

R L,q, Lggq L%e ated with soft elasticity. Cross-linking in the nematic phase,

X O : on the other hand, permanently imprints the uniaxial anisot-

T od 0 pdlug |
¢ €r e ropy into the material and leads to semisoft behavior. We will
(3.60 start by studying the soft case. Further below, we will include

the effects of an imprinted uniaxial anisotropy to investigate
where we have dropped several arguments for notationahe semisoft case.

simplicity and where
_1 A. The model
vs=(2—¢*) ~=1/2—¢/28. (3.61 ) .
Since the spontaneous symmetry axis of soft NE's can
Thus,Cs plays the same role in this problem as temperadoint in any direction, their elastic energy has to be rotation-
ture plays in a traditional thermal phase transition. As in theally invariant not only in target space but also in reference

thermal case, it is useful to introduce a correlation length Space. Both invariances are taken into account by writing the
stretching energy as

&=L, (eL?) "s~C.". (3.62

d A 2 2 3 2
Hy= | d% E(trg) + ptru“+ Ay (tru)°+ Aytru tru
There are two interesting limits we can now consider:

&5|0,|<1 and &|q, [>1. In the first casel'(? must be + Agtru+ By (tru)*+ B,(tru?) >+ By(tru) 2tru?

proportional tog? whengq=0 and tog3 wheng, =0. Thus,
we obtain by choosing = (&5/L,) "5 from Eq. (3.60), +Bjtru trl=13+ B5trl=14}, (4.1

gi”(a,,da.e)
da with the first two expansion coefficients being the usual

1 KL e P72 ~clsq? if gq=0 Lame coefficients. Of course, terms of higher than fourth
~T 2 ) B order are allowed by the symmetries of the system. However,

C10q if q,=0, these higher-order terms turn out to be irrelevant in the RG

(3.63 sense and are hence neglected.

Suppose that the spontaneously uniaxially ordered elas-

where tomer is described in equilibrium by an equilibrium strain

tensoruy. Without loss of generality, we may assume that

v5=v5(2— nx)=1—5¢/14. (3.64  the anisotropy axis lies in th&; direction and thau, is a
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diagonal matrix with the diagonal elemenig,,=ug, and Vab=Wap—S "WogWpq, (4.63

Ugqg= Ug - To describe deviations from the equilibrium con-

figuration, we introduce the relative strain Ugg=WggT S WaqWaq- (4.6b
wW=Uu—Uo 4.2 Next we cast 5, anduvyq into @ more familiar form. Recall

that the relative strainv depends upon the displacement
and to expandH in terms ofw. By dropping terms that relative to the original isotropic state measured in the origi-
depend only orug, we find nal reference space coordinatdt is more convenient, how-
ever, to work with a relative strain’ that depends on the
displacement’ relative to the equilibrium state of the NE
measured in the coordinaxé of the corresponding uniaxial

5 5 5 2 2 reference state. The tensassand u’ are related vigsee,
+b3aWaat baWapt DsWagt C1WadWag T C2WaaWihg e.g., Ref[11))

Hst:f ddLXLJ dXg{@1Wgg+ ApWag+ DWig+baWgWa,

2 2
+ CaWapWagWpgT d1WagWp g, (4.3 w=Afu’

>
nc
>

0 4.7)
where we have discarded terms that turn out to be i”eleva”%herer is the so-called Cauchy deformation tensor of the
The new coefficientsy, a,, by, and so on, depend on the ,iaxia| equilibrium stateA , andu, provide equivalent de-
old coefficients\, u, and so forth, as well as ar, anduo, - geriptions of this state and they are related via

By virtue of the rotational invariance in reference space,
there exists a set of Ward identities relating to the vertex 90:%(/_\340_9, 4.9
functions implicit in Eq.(4.3). We derive these identities in h S
Appendix B. At zero-loop or mean-field level, these Wardwhere 1denotes tha&l X d unit matrix. Substituting the rela-
identities correspond to relations between the elastic cortion (4.7) into Egs.(4.6), we obtain
stants in Eq(4.3),

2
1
OL| ./ v rot Pyt gt
a,-a,~ sbs=0, (4.49 Dab=— | AUt dpUa— T daUgdaua), (499
b2_2b3_3(‘220, b2+b5_2b1+50_|_:0, (44b) 5 1 1
vdd=rA0L ﬁéUé'FE—r_l(?;Ué(?éUé , (4.9p

bs—2b,—sc;=0, c¢;—cy,—c3—2sd;=0, (4.40
where we have used Eg.5 and(3.51) to expressu’. r

wheres is an abbreviation fotig;— U, . Sincew describes = A2 /A2 s the usual anisotropy ratio that characterizes the

deviations from the equilibriung,, its thermal averag@g) anisotropy of the uniaxial equilibrium state. In the steps lead-
has to va_mlsh. At zero temperature, where the mean-fle_lql afRg to Egs.(4.9) we have exploited that=A2, (r—1)/2. A
proximation becomes exact, this means that the coefﬂmen@ance at Eqs(4.9) shows that we can write in a simpler
of the linear terms in Eq4.3) must be zero. Equatio@ .43 and more traditional form by rescalirTg<g—>xa, X

then leads to the observation tHag=0 for ug #ug, . At — , , — .
finite temperatures, thermal fluctuations become importaz&n\/;inéxsv,e gs;gjényagrdriyg;\t/rr]e lil;%”tl)nnﬁg;poratmg

and loop corrections renormalize the elastic constants inclu
ing a;, a,, andbs. For (w) to vanish, the renormalized
versions ofa; anda, have to satisfy equations of state to H=%f ddixlf dxd{Clv§d+ K(Vfud)2+ 2C,04dVaa
which a;=0 anda,=0 are the mean-field approximations.

In the following, we will assume that we have chosgrand + C3v§a+ 2C 4w gb}, (4.10
a, appropriately so that their respective equations of state are

satisfied. In other words, we assume that we expand abouwtith the nonstandard strains

the true equilibrium state. Then, the Ward iden{B11) gen-

eralizing Eq.(4.4a guarantees that the renormaliZeglvan- Vap= 3 (daUp+ dpUa— dalgdplU), (4.113
ishes forug, # Ug, . The vanishing of the elastic constdny .
is the origin of the softness of NE’s, as can easily be seen by Vdd= dgUat 2daladpUq - (4.110

rewriting the nonvanishing terms of the Hamiltonian at lead-
ing order in small deformations in Fourier space.

In what follows, we assume that =a,=bs=0. Exploit-
ing the relationg4.4), we rewrite the stretching energy as

Here, we exclusively retained the only bending term
that is relevant in the RG sense. The new elastic con-
stants C... are proportional to the b.. in
EQ. (4.5: C;=2b;Ag, r2\r—1, Co,=b,Ad r\r—1, Cs
=2bgAg, r—1, andC,=b,A5, \r—1.

Ho= J ddLXLJ‘ dXg{b103q+ D20 g aat bav st bavdy}, A comment regarding the rescalingxf is called for. Our

(4.5  rescalings<g— \r —1xg andug— r —1lug only make sense
if r>1. We have assumed that the nematic phase is charac-

where we have introduced the nonstandard strains terized byr>1. Nematic phases with<1 are also possible.
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In this case, our rescalings would be different. At a second- 1. Diagrammatic expansion

order phase transitiom,— 1 will tend to zero. The transition | js not difficult to see that the Gaussian propagator for
from the isotropic to the nematic elastomer phase is firS\e's coincides with that for CSE’s. see Eq8.12. The
order in all dimensions above 2. The order of the transition irUifferences between andv however, lead to different ver-

two d_ir_nensions has not yet been establ.ished.. A second—orq es. For NE’s we have
transition would have unusual properties since the coeffi-

cients of the nonlinear contributions to the nonlinear strain of 09 4 ) s
Egs.(4.9 diverge ag —0. ?q& aay” (4.143
Instead of using the Hamiltonia@.10 or our RG analy-
sis, we find it convenient to reduce the number of constants _f
featured in the statistical weight exptt/T) by rescalingT i —=—qMq@q, (4.14hH
—\KZIC,T, xg—+C4/KxXq, Uug—K/Cqug, and u, 2T
—(K/Cy4)u,. This gives us finally
1 (2)4(1)§(3)
I 702 0p b (4.149
ot ddix fdxd{wvz +(V2uy)?
T 2T : dat T w—2g+f+2
L T qWg@qgdg® . (4.149
2 2 8T a Ha “b Hb
+29ugguaat fosat 2v50)s (4.12
Of course the sum of the momenta has to vanish at each
where vertex. Note that the vertice8.13 and (4.14 are of the

same structure. Merely the coupling constants appear in dif-
ferent combination. Hence, the Feynman diagrams for both
models have the same topology, or in other words, the two-
leg diagrams for both models can be drawn as in Figs. 1-3.
Like the parametrization of Ed3.6) of the Hamiltonian for ~Moreover, the same type of vertex functions is superficially
CSE's, the parametrization of E¢4.12 is not appropriate divergent. By virtue of the NE mixing invariance, there ex-
for taking the C,—o limit to obtain a smecticA Hamil-  ists a set of Ward identities relating the NE vertex functions.
tonian. As was the case for CSE’s, we are interested in propFhese identities are derived and stated in Appendix C. They
erties unique to NE'’s, and we will not consider the Grinstein-guarantee that we merely have to calculate the two-point
Pelcovits limit of our model. functions. Appendix E describes details of our calculation of
Formally, the Hamiltoniang3.6) and (4.12 look very the NE Feynman diagrams. Our results for the two-point
similar. One has to bear in mind, however, that the strains functions read
andw are different. In fact, the scaling symmetries of Eqgs.
(3.6) and (4.12 are quite different except for the invari- V2+f(g—w)?q3

(U:CJ_/C4, g:CZ/C4, f:C3/C4 (413

ance. The naive dimensions of the fields, the temperature and P =T 1+ wai+ql]- ii2ihe 7ok

the coupling constants are the same for the two models. In 16rey=g"+ (241w

particular, NE's and CSE’s have a mutual upper critical di- [4g+g%—2(6+w)—f(12+ w)]q”

mensiond.= 3. Though both systems possess a mixing in- - = el

variance, the specific forms of these invariances are distinct: 32meN2+fV-g*+(2+f)w

the NE Hamiltonian is invariant under the transformation (4.15a

ua(xc(axd)gua(xc)_ ecéxd ’Xd) + qué(xﬁ’xd)h:;d ud(xc de)”

—Ug(Xe— O:Xq,Xq) + 02X, provided that thef's are small. 5F _ _

This mixing invariance is reminiscent of the original refer- Féldl)=T_IQCIan— 2+1(1+1-9)(9~ ®)040a s

ence space rotation symmetry. In our current approach to 16me\—g°+(2+f)w

NE’s, the B invariance of CSE’s has no counterpart. How- (4.15b

ever, in Appendix D we present an alternative formulation

that features &3 invariance at the cost of having an extra  I'e?=T [(f+1)0a0p+ Sap0’ ]

scaling parameter. Due to the different forms of the strains, ) 5

the remaining symmetries stated at the end of Sec. Il A have N2+ T1[2(1+1—g)"0alp + dapd! ] old

no analog in NE’s. 32me-gZ+(2+f)w '
(4.159

B. Renormalization group analysis

The diagrammatic perturbation expansions for CSE’s and 2. Renormalization

NE's are similar. Instead of repeating the details, we will We eliminate the: poles from the NE vertex functions by
highlight the differences. In contrast, the RG behavior ofemploying the renormalization scheme

CSE’s and NE's is quite different due to the varying scaling

symmetries. Xg—Xg=2Z Y2y, (4.16a
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Ug— bg=2"uy, (4.16h 3. Scaling 1: RG equation and its solution
i The RGE for the NE vertex functions follows as usual
Ua—Ua=2Us, (4.160  from the fact that the unrenormalized theory has to be inde-
s pendent of the arbitrary length scafe ! introduced by
T-T=2Y7; Luct, (4.160 renormalization. Instead of working with the original param-
etersw, g, andf, we prefer to switch to
0—0=2"2;'7,0, (4.160
K=g/w=C2/01, p:f/(,!):C3/C1, (4203
9—§=2"127'249, (4.16f
0=1w=C4/C;. (4.20bh
f—f=2"1z;'zf. (4.169

This step turns out to be helpful in studying the RG flow
because some of the original parameters tend to flow to in-
finity. We will see shortly that, on the other hand,p, ando

flow to finite values. Our RGE reads

Our renormalizations are devised so that the strajpsand
v4q @S well as our Hamiltonian remain invariant in form,

L ddeJ AxXg{Zy 02+ Z1(V2Ug)? N
w 1
T 2T D~ M+ |y[T™¥({a, ,a¢ht,k.p,00) =0
+2Z,00 gdUaat Zifvia+ 2Z1Z0 apbap}.  (4.17) (4.20)

The schem&4.16) follows closely the approach developed with the RG differential operator

by Grinstein and Pelcovit{22]. Of course, other reparam-

etrizations are conceivable. In Appendix D, we present an y

alternative formulation with a different renormalization D=1y = 5 0ddqyt Biort Bidit Bpdpt Byds-
scheme in which neither the elastic displacementxpis (4.22
renormalized.

In our current formulation, there remains no scaling in-The Wilsong functions, from which we determine the fixed
variance of the Hamiltonian that can be exploited to furtherpoints of the RG flow, are given in terms of the Wilsgn
reduce the number of coupling constants. Hence, the renofynctions
malization factors are functions of the original dimensionless

parameters, w, g, andf rather than of a reduced number of 9
effective couplings. The structure of the NE renormalization Ye=pooinZ (4.23
factors is 'U“ 0
Z XMt 0,9,f) by
Z (togf)=1+2 —mg (4.18
m ¢ Bi=t(—e+yr—yl2), (4.243

with X.(.”.‘)(t,w,g,f) being a power series in the effective
temperaturet beginning with the powet™. To one-loop or-
der we find from Eq(4.15 via minimal subtraction

B=K(Yo— Yg)s (4.24b

Bp:P('Yw_'Yf)a (424Q

. 1+t4g+gz—2(7+w)—f(13+w) (4194 P ( ) (4249
= y . g.:O' w - . .
32me2 -2t (21 D)o Yor Ty

The Wilsony functions are readily extracted from the renor-

49+9°-2(6+w)— f(12+ w) malization factors with the result
Z=1—t . (4.19D
32me 2+ fV-g?+(2+f)w (1)
v..=—td X\ (t,w,9,f). (4.25
+ —_ 2
Z,=1+t 2+fg- o) ; (4.190 Switching to the parameters defined in E@s20), we obtain
16mew\—g°+(2+f)w
3k?+12k0—20(3+190) — p(3+370)
V2 f(1+f-g)(g—w) Bi=—te—t2 = ,
Zy=1+t , (4.190 64ma\2+plop+20—«k
16megy—g°+ (2+f)w (4.263
V2+f[1+4(f-g)+2(f—g)°] 2+ plo(k—1)(p+o— x>
Z =1+t . (4.199 g g Y2reloltem Dlptomu) = ) oeh

2mwef\—g?+(2+f)w 16m\p+20— k2 ,
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B,=t 2+ plo {2k%(1—p)+2p?
el I e ——————— K —
? 32m\p+20—K® P P

—4ko+ o+ p(4o—2)}, (4.260

N2+ ploa(—2+4k—2k>+
gt VHPIOOZ2HART 21T 0) o6

7 32m\p+20— K2

For solving the RGE, we introduce the characteristics

JTe4
%ﬁ, w()=p, (4.273
P _ _
(5ﬁ'nz(@:y(t(€),7(€)5(€),5(€)), Z(1)=1,
(4.27b
9— _ _
(4.279
J _
€ﬁﬂf)=BK(t(€),7(€)f(€),F(€)), k(1)=k,
(4.279

Jd _
4 ﬁ?(f)=/3p(t(€),7(€)5(€),3(€)), p(1)=p,
(4.276

o(l)=o.
(4.279

dJ _
€7 o(0)=B(t(6),x(£),a(£),p(£)),

In contrast to the CSE model, we have to look for fixed
points in a four-dimensional parameter space. We find that

the quadruple of coupling constar(ﬁf),?(f),ﬁw),?w))
flows to the IR stable fixed point

64
(t*,K*,p*,(f*):<5—9\/§’ﬁ8,1,1,0). (4.28

rMN (g, 'qd};t,K’p,o.”u):Z(e)—(Mﬁ—l)/ZF(M,N)({qL E(e)—1/2qd};t_(€)'7(5)3(5)5(€),,ue).

Dimensional analysis gives

F(M,N)({qL ,qd},t,K,p,O',,LL):M_(d+1)+dM+(d+l)NF(M’N)( [F! ;2_] ;t,K,p,O',l) .

PHYSICAL REVIEW E69, 021807 (2004

This fixed point is characterized bg,/C;=«x*=1 and
C3/Cy=p* =1. It turns out that the leading scaling behavior
of physical quantities depends not only on the fixed point but
also on the approach to the fixed point described by the
dangerously irrelevant variable. Paths to the fixed point
decay quickly to the line described by

®(0)— k* = (al2+ Udo(£) (4.293

and

p(€)—p*=ao(l) (4.299

for small ¢, wherea is an arbitrary constant. In addition to
the stable fixed point, there is the unstable Gaussian fixed
pointt* =0 and there are two unstable fixed lines which can
be parametrized a@(o),«(o),p(0),0) with

64me\N2—2\20+ 30

Uo)= 313633200+ 152152 02T 124+ 3920},
(4.303
k(o)=1—+0cl2, (4.30b
p(o)=1— 20— 0/2, (4.309

and
64me\2+2\20+ 30
= 2— 1240+ 392

U= 31363320 + 152102 00" Vot 3921,
(4.313
k(o)=1+0o/2, (4.31b
p(o)=1+ 20— a/2. (4.319

With the help of the characteristics, a formal solution to

the RGE is easily obtained,

(4.32

d. dq 433

Equation(4.32 in conjunction with Eq.(4.33 finally reveals the scaling behavior of the vertex functions,

021807-16



ANOMALOUS ELASTICITY OF NEMATIC AND . .. PHYSICAL REVIEW E 69, 021807 (2004

r™Ndq, ,q¢ht,x,p,0,u0)

:(Me)—(d+1)+dM+(d+1)Nz(€)—(M+1)/2F(M,N)

°N dqg —
— -t k(€),p(€),0(€),ut | . (4.39
[/Lf (/.Lf)ZZ(f)l/zJ o p 7 .

4. Scaling 2: Physical quantities

Now we switch back from the convenient scaled variables that we used in our calculations to the original variables in which
we formulated our Hamiltonia4.10. Once more, we mark rescaled variables as well as vertex functions of the rescaled
variables with hats. Recalling our manipulations leading to (BdL2), we write

FoAfSiT, fon 4.35
=Vi3h t= Ft’ (4.353
. Cy . Cy R Cy

Qa=7 dd:  Ua=7Ua,  Ug= "\ Ua- (4.35h

The relation between the physical vertex functions and the vertex functions in the scaled variables is given by

TN, bt k0, u) = KM NZZTRCIEENEEMN (g, 49}t k00, 1). (4.36

Equation(4.36 in conjunction with Eq(4.34) gives

TMN(£q, gkt i, 0 p ) = %KM+3N/22C411N/2Li(d1)dM(d+l)N€(d+1)+dM+(d+l)N[t_(€)/t]lf(g)(MJrl)/Z

A L L Ci—
x| | =Ee L 20 S 51, p0.), (4.37
s Z(€)1/2€2 K
|
where we introduced the susceptibilities d 3 B: B
(oGl =—e—Sy—T—"T=—y,. (4.4]
HMN —FPMN) (4.38 7

Upon expressingy,, in terms ofo, p, and k and by taking

and where we switched from to the length scales )
into account Eqs(4.29, we see that

L=un"1 (4.393
Yoo (4.42
_ Cy -2_ Cq 2
La= Vo # =V L (4.399  in the vicinity of the IR-stable fixed point. Hence,, van-

ishes in the scaling limit. Consequenty; , C,, andCjs are
The behavior of the elastic moduli is now easily extractednormal.
from the two-point vertex functions. Upon specializing Eq.
(4.37 to N=2 andM =0, etc., we obtain 5. Behavior of the elastic constants for<d3
For d<3, we can assign physical content to the length
scaleL , by exploiting the definition of the rescaled dimen-

sionless temperatuﬁe This provides us with

K(€)=K€ =Z(¢) Y t(€)/t] L, (4.403

C1(0)=Cyt°Z() ¥ t(O)t] Yo ) o],
(4.40b K312\ Ve
()

— — P17 (4.43
Ca(0)=Cut*Z(€) 3t (€)/It]"Y,  (4.400 Cy T
C,(£)~C3(£)~Cy(£). (4.400 as the transversal length scale associated with the onset of

scaling behavior. The corresponding longitudinal length
ForC,, C,, andC3; we can draw our final conclusions with- scale can be inferred from E¢.39h.
out solving the characteristics. Taking the derivative with As solutions to the characteristics, we obtain the power
respect to the flow parameter, we find, for example, laws
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Z(0)~¢7, (4.443
o()~ol", (4.44b
where
y*=y(t* k% ,p*,0%)=—42:/59  (4.449
and
w=4¢/59 (4.449

PHYSICAL REVIEW E69, 021807 (2004

7. Poisson ratios

Since the momentum dependence of the anomalous elas-
tic moduli is logarithmic in three dimensions, it will be dif-
ficult to observe the anomalous elasticity of NE's upon mea-
suring these moduli directly. However, our analysis reveals
the existence of several Poisson ratios of the elastic moduli
that should be conveniently accessible by experiments.

The IR stable fixed-point values af, p, and o directly
imply the Poisson ratio€,/C,=1, C3/C;=1, andC,/C;
=0. Remarkably, not only the stable fixed point but also the
approach to it contains information on relations between the
elastic moduli. From Eqs4.29 it follows that 2«—p—1

is a Wegner exponent corresponding to the smallest eiger= ¢/2 for small flow parametef. Switching back to the

value of the Hessian at the stable fixed point.

Equation(4.37) in conjunction with the power-law behav-

ior of Z(¢) ando(€)/o along with Egs.(4.43 and (4.39bH
for the crossover lengths, andL 4 provide us with a com-
plete scaling picture of our vertex functions @< 3. This
picture is summarized in Eq82.13 with

nk=¢e+ y*12=38e/59, (4.453
ne=e+3y*[2=4/59=w, (4.45hH
=2+ y*12=2—215/59. (4.450

Finally, the power lawg4.44) along with Eqs.(4.40 result

original elastic constants, we find the Poisson ratio

2C,—C3—C; 1
C—4_ E (4.49)

Note that Eq.(4.49 implies the Poisson ratiqu/u, =8
found by Xing and Radzihovskj24], whereu, and u are
longitudinal and transverse shear moduli, respecti{/@s}.

8. Semisoft elasticity

So far we considered soft elastic NE's synthesized by
cross-linking in the isotropic phase. If a NE is cross-linked in
the nematic phase, a memory of the anisotropy at the time of
cross-linking is locked in, or in other words, the rotational

in the scaling forms for the elastic constants summarized ifYMMety in the reference space is broken. The simplest way
Egs. (2.16 and (2.17). Note thatK diverges at long length of modeling this symmetry breaking is by introducing an

scalesC,, on the other hand, vanishes in this regime.

6. Logarithmic behavior in d=3

aligning external field, or more precisely, an aligning exter-
nal stress. In this spirit we supplement the elastic energy
(4.1) with the term stated in Eq2.11). Next, we switch to
the relative strairi4.2) and exploit a Ward identity that cor-

In three dimensions, the solutions to the characteristicfesponds at zero-loop order to
that we need to determine the behavior of the elastic moduli

are given at leading order by

7./6t

64w

-1

In(€) (4.4

t_(f)/t:[l—

and Z(¢)~[t(£)/t]~ 49 Inserting these logarithmic solu-

tions into Egs.(4.40, we obtain

7.6t 38/59
K(qL)NK[l_ m'n(LJQJ) , (4479

7.6t —4/59
C4(QL)~C4[1_ Wln(l—ﬂ(hb (4.47b

Using o(€) ~[t(€)/t]**° one can check explicitly that,,
C,, andC; are normal.K and C, diverge and vanish, re-
spectively, forL,|q,|—0. Note that Eqs(4.47) imply the
existence of the crossover-length scale

64 64K
glzLiexp( 7T)zhexp( W\/—g

o ) (4.49

h=2sbs. (4.50

By virtue of this Ward identity, which is derived Appendix B,
we can study the effects of the external aligning stress via
studying the RG behavior df; featured in Eq(4.3).

Before embarking on a perturbation calculation, we recall
the rescalings that led from E@.3) to our final NE Hamil-
tonian(4.12. By applying these rescalings to E¢.3) with
now bs=h/s instead ofbs=0, by incorporating bending and
by dropping irrelevant terms, we derive the model Hamil-
tonian

He H e d
? = ? —+ ﬁ d LXL dxd&audaaud 1 (4'5])

with H/T given by Eq.(4.12. The coupling constang is
defined as

h
o=

C4K(1-2s)° (4.52

Being interested in semisoft behavior, we assume thist
small. Hence, we trea as a relevant perturbation.
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Our diagrammatic calculation proceeds in much the samat this point. In the limit¢,|g, | <1, we obtain upon choosing
way as the one outlined in Sec. Il B 7. The only difference is¢ = (&,/L, ) *h that
that here we have to replace the verti¢8sl3 by the NE
vertices(4.14). Expansion of the diagrams to first orderdn r'%(q, ,qq;€)
leads to are pole in "% that is proportional teeq?. We

- —(2=mK) 42 2 _
remove the divergence by letting 1| KL, ™¢g T ™gi~hmgl if qq=0

T|cyq3 if q,=0
e—2=7;Z.e (4.53 19q ac
(4.62
with
where
V2+f(3+f-2g+
z-1- g 2HIGHIT20R0) gy Yo= V(2= mi) =1~ 106/59. (4.69

¢ 16me V- g%+ (2+f)w
In the limit &,|q,|>1, corresponding to the limi—0, we

The appropriate RGE here reads retrieve essentially the scaling form that we had fet 0.
Now, however, there is an additional correction term that

N . ,1/1} . . .
. N (M.N) . vanishes as &,/q,|) ~**h. Physically, this correction term
Dyt edde—| M+ 27 r (9. ,Gabit kop,0.8,0) modifies the behavior from soft to semisoft. For a review of
the complete scaling results, see E¢.13, (2.16), and
=0, 459 (2.17.

where it is understood that the vertex functions are expanded
to first order ine. The RG differential operatdd , is stated

in Eq. (4.22 and In this paper, we have explored the anomalous elasticity
of two models for soft uniaxial elastomers, both of which are
y=nd,Inelo=yr=7re. (458 characterized by the vanishing of the shear mod@ysor
shears in planes containing the anisotropy axis. The first
model, which we refer to as a critically soft elaston@ésb),
P - describes a uniaxial system at a simplified critical point sepa-
¢ —1Ine(€)=uy(t(£),x(£),p(£),a(£)), el)=e, rating a true uniaxial elastic phase characterized by five elas-
a4 tic moduli and a lower-symmetry phase produced by shear-
(4.57) ing the uniaxial solid. The second model describes nematic
elastomergNE'’s) formed via spontaneous symmetry break-
ing from an anisotropic state. In the CSE model, a bending
modulus diverges, and three of the four elastic moduli vanish
as power laws in wave number at long wavelength below
spatial dimensiord=3 and logarithmically ad=3. In the
NE model, the relevant bending modulus diverges, but only
one elastic constant exhibits singular behavior. In both mod-
els, we studied the effect of turning on couplings that take
them from soft to true uniaxial elastomers. These fields act
o2 ) like temperature or external fields at a thermal critical point,
ad” (AL ,dq;e) respectively, and introduce coherence lengths that diverge as
K R L,q, Lqdq Lfe a power law as the fully soft state is approached.
==L % xp%? : ; , The logarithmic corrections that we predict will be very
T ¢ 0 g? ¢ - - - -
difficult to measure. Our universal Poisson ratios, on the
(4.59  other hand, should be observable in experiments on three-
dimensional soft elastomers. The anomalous elasticity will
where we have simplified the notation by dropping severabe more important in two than in three dimensions. It would

V. CONCLUDING REMARKS

In d<3, the characteristic foeg,

has the fixed-point solution
) ~et?", (4.58

with ¢* = (t* ,k*,p*,0*) = 18¢/59. Supplementing the so-
lution to the RGE(4.55 with a dimensional analysis and
switching to original variables yields for the physical vertex

function I'%;? the scaling form

arguments and where be interesting to find a two-dimensional realization of nem-
. atic elastomers, say in a cross-linked membrane confined to a
vh=(2—¢*) *=1/2+9¢/108. (4.60  substrate which inhibits height fluctuatiofi83]. Another

two-dimensional system belonging to the NE universality
We emphasize the different roles played®y andhin the  class would be a tethered nematic membrane that orients in a
CSE model and in NE's, respectivelgs corresponds to a plane perpendicular to an external aligning field.
temperature whereds corresponds to an external magnetic  Qur analysis exemplifies the power and the beauty of the
field. Nevertheless, it is useful to introduce a Iength scale renormalization group. The renormalization group handles
. B the rotational invariances of nematic elastomers in two dis-
&=L, (eL])""~h""n (46D tinct spaces quite naturally. Though the constraints imposed
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by these invariances lead to almost baroquely complicated Now we adopt the usual strategy and take various deriva-
formulas at intermediate stages of the analysis, our final retives. We start with
sults have a surprisingly clear and simple stature.

&La J d 8%hg(x) N oh,(y)
_— = X X
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In equilibrium, the order parameters vanish for vanishing
external fieldsh,=hy=0. Hence, we get the Ward identity

d 1,2 _ 2,0
APPENDIX A: WARD IDENTITIES FOR CRITICALLY —f d9% %, §H2(x,y,2) =T 32y, 2). (A9)
SOFT ELASTOMERS

By virtue of the mixing invariance discussed at the end ofIn Fourier space, identitya9) takes the form

Sec. Il A, there exist several Ward identities for CSE’s. In p

this appendix, we derive these identities. _ —i mrgﬁﬁ)(pﬂ),p@),p@)) —T29(p2 p®)
To facilitate our derivation, we introduce external fields Pa p(L=0

via (A10)

with p®+p®)=0. Another Ward identity can be found by
—H=H— | d%{h.u.+h , Al taking the second functional derivative lof with respect to
=1 f X{hala +Natla} A my(y) andmgy(z). This leads in Fourier space to

where fd9= [d%x, fdx4. As usual, the external fields al- .
low us to exploit the free energy —I oD Iig(p™,p@,p®)
Pa D=0
F[ha,hg]=—TInZ[h,,hy], (A2) =TEY(p@,p)+ T4 (p®,p@). (A1)
where the partition function is given by An identity for the four-point vertex functioir ;3 follows

in a similar manner upon taking a third-order functional de-
rivative of L, with respect to, saymgy(y), my(z), and

Z[ha,hd]=f Du,Dugyexp—H,/T), (A3) my(w). The result can be stated as
as a generating function for the order parameters —i %F&%é)u(p“),p(z),p@),p(“))
Pa pH=0
1) =I‘(l'2)( (2) H(3) KH(4) (1,2)14(4) (2) (3)
ma(x) <Ud(x)> 5ha(x) ’ (A4) a a

+T553 (p®,p®,p@). (A12)

Of course, our Ward identities should hold to arbitrary

Mq(x) =(Ua(X)) = Shy(x) (AS) order in perturbation theory. At zero loop order, the consis-

tency of the Ward identities can be checked without much

As a consequence of the mixing invariance, the free energgffort. We carried out this check and found our identities
obeys the relation confirmed.

APPENDIX B: WARD IDENTITIES FOR NEMATIC
Flha,hql= 04 d xzhg+F[ha,hgl, (AB) ELASTOMERS |

Here we derive the Ward identities that follow from the
wherehg=hy+ 6;h, . Because the left-hand side of EA6)  reference space rotation invariance of the NE Hamiltonian
is independent of thé,, we obtain (4.1). One of these Ward identities can be viewed as the

origin of the soft elasticity characterizing NE's cross-linked

in the isotropic phase. In addition, we consider semisoft NE’s

where the reference space rotation invariance is broken by an
(A7) aligning external stress.

_F [ e d _
La—(w —f d xxahd(x)+f d my(x)h,(x)=0.
a
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1. The soft case

To make our arguments more intuitive, we work directly

PHYSICAL REVIEW E 69, 021807 (2004

CF [ ey .
_ﬁ_J d{ —sI"25(x) + Myl 15(X) — Myl 5(X)

in d=3 dimensions. Without loss of generality, we assume

rotations about the axis, which we parametrize by a rota-
tion angled. For smallg, these rotations are described by the
orthogonal matrix

1 0 O
Or={0 1 ¢ (B1)
0 -6 1
Such a rotation takes the strairto u’=0guO%, whereOf
is the transpose @y . The relative strainv=u—uy is taken
by the rotation to
W' =OrUoOR— U+ OrWOR (82

We introduce an external symmetric stressinto our
model via

HHHU:H_J‘ ddX aijWij , (83)

whereH is the elastic energy of E¢4.3) supplemented with
the relevant bending term. Then, the free energy

Flgl=—-TInZ[g], (B4)
with the partition function
Z[g]=f Dwexp(—H,/T), (B5)

is a generating function for the tensor order parameter

S (0 (B6)

m;j (X) = (W;j (X)) =

Owing to the rotation invariance of the Hamiltonid.3)
without external stress, the free energy satisfies

F[g]z—ﬁsj d[op5+ o2l +F[g'], (B7)

with the elements of the symmetric tensor given by

o11= 011, (B8a)

01,= 015~ 00713, (B8b)
013= 013+ 00y, (B8c)
0= 025~ 0(023+ 039), (B8d)
055= a3t 0(02p— 033), (B8e)
043= 033+ 0( 03+ 030). (B8f)

Evidently, the left-hand side of the identif7) is inde-
pendent of the rotation angle Hence, the quantity

—2mMg T px(X) = ['33(X) ] = [ Mgg(X) — Myp(X) T 25(X) }
(B9)

vanishes identically. In this expression, we used the facts that
m;j(X) and oj; are symmetric tensors and thdt;(x)
=206F/omy;(x) for i#j (we use onlyi<j) and I';j(x)

= 6F/é6m;;(x) for all i (no Einstein convention Now we are

in the position to extract the sought-after Ward identities sim-
ply by taking functional derivatives df with respect to the
order parameter. For example, differentiating with respect to
my5(y) and settingm;; =0, we obtain the Ward identity,

oL ] )
Smydy) _SJ d% T p324 X,¥) — 2[T'p(y) —I'33(y) ]=0,
(B10)
which in Fourier space is
sI'23240,0)+2[['2/0)—T'350)]=0.  (B11)

This Ward identity is particularly important because it is the
origin of the soft elasticity of NE's. Taking the appropriate
derivatives of the free energy in E@.3), it is straightfor-
ward to show thatl’,3,40,0)=2bg, I'33(0,0)=a;, and
I',(0,0)=a, and thus that Eq.B11) reduces relatioi4.43
at zero-loop order.

The derivation of the other Ward identities that generalize
the remaining relations stated in Eq4.4) is a similar exer-
cise. We restrict ourselves to stating the final results

=8I 2323140,— P, P) — 2" 214 — P, P) + 2I'3314(— P, P) =0,

(B123
—SI232334 0, = p,P) = 2T 323 — P, p) + 2" 333 — P, p)
—T'234 —p,p) =0, (B12b)
—SI'5313140,—p,p) =20 121 = p,p) + 21" 1314 —p,p) =0,
(B120

—SI232313140, p,p2, p(s)) — 21 321314 p,p', p(s))
+ 20 331314 P, p?,p®) = 2T 15934 p @, pY, p?)
—T12034p,pY,p?)=0. (B12d

2. The semisoft case

Now we consider semisoft NE's modeled by the elastic
energy (4.1) supplemented with the explicit uniaxial term
(2.11). The aligning stresh breaks the reference space rota-
tion symmetry in much the same way as the steessilized
in Appendix B 1. Thus, we basically just have to repeat the
steps carried out in Appendix B 1 with

Ho"’Hh,U:Hh_f ddXUijWij:H_f ddXO'h’ijWij,
(B13)
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where (0 2 (3)yp(3
A (d—Dh "o (P?,p*)ps”, (C3b
O = o+ a(5i15j1+ 5i25j2)_T5i35j3-
(B14) ap<1> T4 (p® p@) p3 p@)
This analysis leads in Fourier space to the Ward identity pt=0
G100 =0 B3 TR PP T 07
+r2 (4), (2), (3)
provided that the equations of stafg,(0)=0 and I 33(0) add (PLPLPT)
=0 are satisfied. At zero-loop level, the identif$15) re- J 03 2) (3 @@
duced to the relation betwednandb; stated in Eq(4.50. - _ﬁng)Fddd(p P, ) py
APPENDIX C: WARD IDENTITIES FOR NEMATIC _ LF(O 3(p@,p,p@)p@
ELASTOMERS I gpf) 4t
The mixing invariance of NE's leads to Ward identities J 03 4
analogous to those for CSE’s derived in Appendix A. Since - Wl“gdd)(p(z),p“),p“))pg i (C30
d

the derivation of the two sets of identities is similar and
Appendix A is fairly detailed, we restrict ourselves here to

mention differences in the derivations and to list results.
Introducing external fields via the stépl), we find that
the free energy of NE’s satisfies the identity

F[ha(x),ha(x)]=— HaJ d Xahg(x) + Fha(Xc

+ 0:Xg . Xa)Na(Xc+ OcXg . Xg) + Oaha(X)].

(Cy
Thus, the quantity.,= dF/d6, obeys the equation
—f ddx xahd(x)+f d9% my(x)ha(x)
&h X
Jddxmc(x x +J d% my ( )Xd=0.
(C2

By taking the appropriate functional derivatives with respect

to the order parameter, we obtain the Ward identities

J
2
6] Fd]ab)(pu)vp(z)!p(:;))

&pa p(L=0
_Fth;O)(p(Z), (l l)(p(Z) )pa (2)
J (11) (3)yn(3)
—&p<3 (p?,p*)pyY, (C3a

0,3
—o i e™,p?,p?)
a p(1)=0

(0,2 ~(2) L(3)\n(2)
Jp@ dd (p*“,p™)py

APPENDIX D: ALTERNATIVE RENORMALIZATION
SCHEME FOR NEMATIC ELASTOMERS

Our renormalization schem&t.16), which involves a
reparametrization of the coordinatg, follows closely the
approach developed by Grinstein and Pelcoj@]. Though
this approach has been established for more than two de-
cades now, it is not clear how the known strategies of prov-
ing renormalizability apply to it. In this appendix, we briefly
present an alternative renormalization scheme for NE’s that
does not entail a reparametrization x3f. We demonstrate
that the alternative formulation leads exactly to the same
results as our original approach.

Let us revisit our Hamiltoniari4.10 as a starting point.

To reduce the number of scaling variables, we BetTK.
This step yields

H 1 g .

_:_Vf d LXLJ dxg{ @vgq

T 271
+(Vfud)z—i—2gvddvaa+fv§a+2Flv§b}, (D1

whereo=C, /K, §=C,/K, f=C;/K, andh=C,/K. Note

thath has no counterpart in E¢4.12 and that we thus have

an additional parameter in comparison to E412. Due to

this additional parameter, the Hamiltoniéd1) has an addi-

tional invariance, viz., it is invariant from under the rescaling

Xg—B g, ug—BMug, u—plu,, TopM, o

— B0, §— By, f—p 1, andh— B~ 1h (B rescaling.

This scaling invariance implies that the vertex functions

obey the scaling from

MN) {qLaqd} :I’— gl\fyﬁ)

= M+ 2p(MN) {q, 'B1/2qd};ﬂll2-‘|’-

| 8¢
| @
W
S

(D2)
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Equation(D2) suggests to introduce composite parameters h Pﬁ_zflz h (D4e)
that are invariant under the rescaling. Among various pos- T ar anth
sibilities we choose With this scheme
t=p *h¥T=p"*TC, /K5, (D3a) H o1
v T [, [ dnizaivie (9207

w=ulh=C,/C,, (D3b) oo

g=8/h=C,/Ca, (D30 +2Zguaaat Zifviat 2Zphogsl  (DB)

=¥heC./C (D3d) Next we derive a RGE for the vertex functions. Exploiting as

= =L3/Ly.

usual the independence of the bare theoryuodnd upon
Note that these composite parameters are identical to tHVitching viat, o, g, andf to the benign parametetsx, p,
parameters we introduced by switching from E4.10 to  ando, we get

EqA(thlé%?His prelude, we specify our alternative renormaliza- [md,+ thag+ Biiet Bidit Bydyp T Bodo]
tion scheme, XTI MN({q, ,qa};t,k,p,0,0,0)=0,  (DB)
T—ﬁ:zﬁ, (D4a)  where
oo o=2717,0, (D4b) {=pd, Inhlo=yr— 7y (D7)
g—>é= 7- 1Zg§], (D40 and where the Wilsop and y functions are defined as usual.

By solving the RGEDG6), supplementing the solution with a
dimensional analysis, and by exploiting E@2) with the

f—f=27'2f, (D4d)  choiceg=h for the parameter of thg rescaling, we find

RO 2.l o
[27 (w)e‘)—?d}:tw),,«(e),pw),ow).lw@ - 9

TN, Gabit ,p, P ) =R(6) M DTN

Now we take a closer look at the RG flow of Comparing APPENDIX E: CALCULATION OF FEYNMAN DIAGRAMS

the renormalized Hamiltonianf®5) and(4.17), we learn that Here we give some details on the calculation of the Feyn-

man diagrams listed in Figs. 1-3. The first part of this ap-
pendix contains two representative examples. All the remain-

] ] i ing diagrams may then be computed by similar means. The
provided the left- and the right-hand sides are expressed igecond part features two parameter integrals. All two-leg dia-

terms of the same variables, here in partictjat, p, ando. grams can be expressed in terms of these integrals.
Using Eq.(D7) and the definition of the Wilsory functions,

we find

Zy=2+Z, (D9)

1. Examples

= (B10) As a first example, we consider the first diagram in the

From the corresponding characteristics, we consequentl oﬁ—rSt row of Fig. 1. For the sake of argument, we refer to this
tain P g ' d y diagram asAyy. Regarding CSE's, this diagram stands for
the mathematical formula

(0)~Z(6)2. (D11) ’

Add:qg% fkka(ka+Qa)kb(kb+Qb)Gdd(k)Gdd(k+Q),
Collecting Egs.(D8) and (D10), we learn that our original (ED

and our alternative formulation lead to equivalent scaling

results for the vertex functions. Of course, all results that

follow from the scaling forms for the vertex functions, in whereq is an external momentum running trough the dia-
particular the anomalous behavior of the elastic moduli, argram. [, is an abbreviation for 1/(2)9 fd%k, fdkg.
identical for both approaches. Simple power counting reveals that the superficial degree of
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divergence ofA,q is zero. Hence, it is sufficient to evaluate "
the diagram at vanishing external momentum. &er0, Ayq Mfr})=A_mB_(d+"1)’4f ————. (B9
reduces to k(Br+kg+ki)
2 . .
g Next, we employ the Schwinger representation,
Ada=0g— B M3, (E2
A*l/ZB*(d+|*1)/4 o

(1)_ 1oy —
with M{) being a specification of the parameter integral Min 2mIrn)  Jo ds $™ " exp(—sBr)

Mfr}) defined in Eq.(E7). Exploiting the result(E1l), we
obtain xf ddk, k! exp(—skf)f dkq exp(—skj).

Bl2 ,—el4
Ada= 9" 217 155 (E3) (E9)
Now the momentum integrations are straightforward. We ob-

as the final result foAy4. Regarding NE’s, we simply have tain
to replace they? stemming from the vertices byw(—g)2.

As a second example, we illustrate the computation of the A‘”ZB‘("“‘“"‘F(
last diagram in the row line of Fig. 1. Let us call this diagram M f'}):
Cqq- In the case of the CSE model, it visualized the formula

d+|—1>

2(477)d/2F(n)F(d_Tl)
2
Cas=2 [ Kifa, (@, +K,) PGk Gyl + ).

X fmdsexp(—sBT)s—1+[(4n—l—d—1>/4].
(E4) 0

The superficial degree of divergence of this diagram is 2. _ S . (ElO?
Hence an evaluation at=0 is not sufficient and we rather Carrying out the remaining integration over the Schwinger
have to expandC4q4 in powers of the external momentum. parametes gives finally

Using the parameter integril (2 defined in Eq(E12), this oz 2F1 8
expansion can be written as W ATTB I 4
Mln = _
Cdd=qjngz{ME)22)—%BM%)-FZBzMg%)}. (ES) 2(477)d’2F(n)I‘(228)

All the other terms in this expansion turn out to be UV-
convergent. Using EqE13), the final result forCyq is now
readily found to be

In—|—4+¢

xT 2

T*(4n*|*4+8)/4' (Ell)

c —dta? B3/2 7ol - In addition toM{}, it turns out to be convenient to intro-
dd= L9732 Game (B8 guce a second parameter integral, viz.,

. . : kiK',
Again, one simply has to replace té stemming from the Ml(r?:f . — (E12)
vertices by —g)? if one is interested in NE’s. k(B7+Aky+BK})

This integral can be calculated by the same mearldl s

2. Parameter integrals We obtain the result

Many of the two-leg diagrams can be expressed in terms N
of the parameter integral A-32g—(2n=3)2p
(2)
M<1>—f 4 E " 4(4m)dr F(Z_g
" Jk(Br+AKG+BK)" E7) (4m)T T (I —
The calculation of this integral can be simplified by rescaling «T 4n—1-8+e n-1-8+olm (E13
the momenta, 4
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