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Anomalous elasticity of nematic and critically soft elastomers

Olaf Stenull and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

~Received 28 July 2003; published 27 February 2004!

Uniaxial elastomers are characterized by five elastic constants. If their elastic modulusC5 describing the
energy of shear strains in planes containing the anisotropy axis vanishes, they are said to be soft. In spatial
dimensionsd less than or equal to 3, soft elastomers exhibit anomalous elasticity with certain length-scale-
dependent bending moduli that diverge and shear moduli that vanish at large length scales. Using renormalized
field theory atd53 and to first order in«532d, we calculate critical exponents and other properties
characterizing the anomalous elasticity of two soft systems:~i! nematic elastomers in which softness is a
manifestation of a Goldstone mode induced by the spontaneous symmetry breaking associated with a transition
from an isotropic state to a nematic state, and~ii ! a particular version of what we call a critically soft elastomer
in which C550 corresponds to a critical point terminating the stability regime of a uniaxial elastomer with
C5.0.

DOI: 10.1103/PhysRevE.69.021807 PACS number~s!: 61.41.1e, 64.60.Fr, 64.60.Ak
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I. INTRODUCTION

Liquid-crystalline elastomers@1–3# are elastic media with
the macroscopic symmetry properties of liquid crystals@4,5#.
They consist of weakly cross-linked polymeric networ
with mesogenic units. The existence of the rubbery cro
linked network has apparently little impact on liquid
crystalline phase behavior. In fact, the usual thermotro
liquid-crystal phases, i.e., the nematic, choleste
smectic-A, and smectic-C phases have their elastomer
counterparts@3,6#. However, because liquid-crystalline ela
tomers cannot flow, they have mechanical properties that
fer significantly from standard liquid crystals. Usuall
liquid-crystalline elastomers are prepared by cross-link
side-chain @10# or main-chain @7# polymers. Alternative
methods of synthesis include the polymerization of mo
meric solutes in a liquid-crystalline solvent@8# or the con-
finement of a conventional liquid crystal in a dilute flexib
matrix such as aerosil@9#.

The main subject of this paper is nematic liqui
crystalline elastomers, or briefly, nematic elastomers~NE’s!.
For recent reviews on NE’s, see Refs.@10,11#. These mate-
rials have unique properties that make them candidates
device applications. Temperature change@12# or illumination
@13# can alter the orientational order and cause the elasto
to extend or contract as much as 400%@14#. This qualifies
nematic elastomers as contestants for use in artificial mus
@15,16#. Another striking property of nematic elastomers
their soft elasticity@17,19–21# characterized by vanishin
shear stresses for a range of longitudinal strains applied
pendicular to the uniaxial direction.

The origin of soft elasticity in NE’s is the spontaneo
breaking of rotational symmetry of the isotropic state
duced by the development of orientational order in the ne
atic state@17,18#. This spontaneous symmetry breaking h
the consequence that NE’s are not like conventional unia
elastomers characterized by five independent shear mo
Rather, the elastic constant associated with shear in pl
containing the anisotropy axis~customarily calledC5) van-
ishes in NE’s.
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Though we are primarily interested in NE’s, we also stu
a particular version of another class of soft uniaxial el
tomers in which the elastic constantC5 simply vanishes for
energetic or entropic reasons. In this case,C550 is a critical
point marking the boundary between the high-symme
uniaxial phase withC5.0 and a low-symmetry sheare
phase withC5,0. In other words,C5 acts like the tempera
ture variable in a standard thermal phase transition. A co
plete model of this critical point requires the introduction
third- and fourth-order terms in the nonlinear strains to s
bilize the system whenC5,0. Since this complete model i
characterized by a large number of parameters, it is q
complex. Rather than analyze this full model, we consi
simpler model systems, which we call critically soft ela
tomers or CSE’s, defined by simply settingC550 in the
standard elastic energy of a uniaxial medium containing o
quadratic terms in nonlinear strains. Remarkably, CSE’s
hibit well-defined anomalous elasticity much like that of t
more physical NE’s even though they lack the nonline
terms needed to stabilize their low-symmetry phase. CS
are simpler in many ways than NE’s, and the analysis of th
anomalous behavior provides a useful and instructive tuto
prelude to the analysis of NE’s.

On the level of mean-field theory, the elastic energies
NE’s and CSE’s coincide. Therefore, their respective ela
properties are equivalent above their mutual upper crit
dimension 3. For dimensionsd<3, however, fluctuations be
come important. These fluctuations lead to Grinste
Pelcovits@22# -type renormalizations culminating in anom
lous elasticity, i.e., in a length-scale dependence of cer
elastic constants, with different universality classes for N
and CSE’s.

In the present paper, we explore the anomalous elast
of NE’s and CSE’s by carrying out a renormalization gro
~RG! analysis. Using the methods of renormalized fie
theory @23#, we examine the scaling behavior of the elas
constants ind53 as well as ind532« dimensions. A brief
account of our work on NE’s appears in Ref.@24#. Our work
on CSE’s has not been reported hitherto. We will treat o
systems in which random stresses are not important. Ran
©2004 The American Physical Society07-1
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stresses lead to a different universality class with anoma
behavior@17,25# below five rather than three dimensions.

The plan of presentation is as follows. In Sec. II we gi
a brief summary of our main results. In Sec. III we discu
CSE’s. In Sec. III A we briefly review some elements of t
Lagrangian theory of elasticity and then set up a Land
Ginzburg-Wilson elastic energy functional~Hamiltonian! for
CSE’s. As a prelude to the subsequent RG analysis, we
lyze the symmetry contents of this Hamiltonian. Section II
contains the core of our renormalized field theory of CSE
We explain our diagrammatic perturbation calculation and
renormalization. By solving the appropriate RG equation,
ascertain the scaling behavior of displacement correla
functions and ultimately that of the relevant elastic modu
We conclude Sec. III by making contact with convention
uniaxial elastomers by incorporating a small but nonvani
ing C5 , which leads to semisoft elasticity. Section IV dea
with NE’s and has an outline similar to that of Sec. III.
Sec. IV A we derive a Landau-Ginzburg-Wilson minim
model for NE’s in the form of a field-theoretic Hamiltonian
Our renormalized field theory for this model is presented
Sec. IV B. The main part of this paper concludes with Sec
where we give concluding remarks. There are five App
dixes. In Appendixes A, B, and C, we derive Ward identit
for CSE’s and NE’s. An alternative RG approach to NE’s
sketched in Appendix D. Appendix E contains details on
calculation of Feynman diagrams.

II. SUMMARY OF RESULTS

For the convenience of the reader, we now summarize
main results before we get into details of our work.

A. Critically soft elastomers

The elastic constants of CSE’s are defined via the mo
elastic energy

H5 1
2 E dd'x'E dxd$C1udd

2 1K~“'
2 ud!212C2udduaa

1C3uaa
2 12C4uabuab1C5uaduad%, ~2.1!

whereud andua , a51,...,d21, are, respectively, the direc
tions parallel and perpendicular to the nematic order
udd , uab , and uad are components of the Lagrangian no
linear strain tensor@26,27#. The elastic constantC1 describes
longitudinal shear along the anisotropy.C2 couples strains
along the anisotropy axis to shears in the plane perpendic
to the anisotropy axis. The elastic constantsC3 and C4 are
associated with shear purely in the plane perpendicular to
distinguished direction.K is a bending modulus. The pur
CSE system with soft elasticity is characterized byC550.
The couplingC5 plays a role similar to that of the temper
ture in a thermal phase transition. WhenC5.0, the system
displays conventional uniaxial elasticity. WhenC5,0, the
system is unstable with respect to the formation of a low
symmetry~sheared! elastic state.C550 marks the transition
between the two phases. At this point, the system sh
critical behavior analogous to critical behavior at a therm
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phase transition. Our simple CSE model does not inclu
higher-order terms in the strain to stabilize the sheared ph
We expect, however, that the full model with these ter
included will have the same structure as our CSE mode
least forC5>0.

The inverse displacement correlation functions~vertex
functions! obey scaling forms that can be expressed ford
,3 as

Gdd~q' ,qd!5
K

T
L'

24,42hKF̂ddS L'q'

,
,
Ldqd

,f ,
C5

K

L'
2

,1/n5D ,

~2.2a!

Gad~q' ,qd!5
C2

T
L'

21Ld
21,11h21f

3F̂adS L'q'

,
,
Ldqd

,f ,
C5

K

L'
2

,1/n5D ,

~2.2b!

Gab~q' ,qd!5
C4

T
L'

22,21hCF̂abS L'q'

,
,
Ldqd

,f ,
C5

K

L'
2

,1/n5D ,

~2.2c!

where qd and q' are, respectively, wave numbers~or mo-
menta! parallel and perpendicular to the anisotropy axis.

hK54«/7, hC5«/7, h25«/7, ~2.3a!

n55 1
2 2«/28, f5~42hK!/2, ~2.3b!

where«532d1 are scaling exponents. In principle, the e
ponentsf and h2 could be independent of the other exp
nents. For the CSE model, however, they are not at leas

first order in «. The scaling functionsF̂dd(q' ,qd ,e),

F̂ad(q' ,qd ,e), andF̂ab(q' ,qd ,e) are, respectively, propor
tional to q'

4 1qd
21eq'

2 , q'qd , and q'
2 in the long-

wavelength limit in mean-field theory.F̂ab also has a term
proportional toqd

4, but its coefficient is irrelevant and w
will not be concerned with it here. The boundary betwe
scaling and Gaussian behavior is marked by the nonlin
length scales

L';@AC1K3/~C4T!#1/«, ~2.4a!

Ld5AC1 /KL'
2 , ~2.4b!

where T is the temperature measured in units so that
Boltzmann constant is equal to 1.

The above scaling forms imply the following scaling fo
the elastic constants:
7-2
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C2;C3;C4

;H ~L'uq'u!hC if j5uq'u@1, qd50

~Ldqd!hC /f if j5uq'uLd /L'@1, q'50

~L'j5
21!hC if ~q' ,qd!5~0,0!

~2.5!

and

K;H ~L'uq'u!2hK if j5uq'u@1, qd50

~Ldqd!2hK /f if j5uq'uLd /L'@1, q'50

~L'j5
21!2hK if ~q' ,qd!5~0,0!

,

~2.6!

wherej5 is a correlation length given by

j55L'~L'
2 C5 /K !2n5. ~2.7!

The elastic constantC1 is not renormalized and it is no
singular in either the wave numbers orj5 . WhenC5 is non-
zero,Gdd;C5

g5q'
2 1Kq'

4 at smallq, whereg55(22hK)n5

andK is given by the last expression in Eq.~2.6!.
At exactly three dimensions, the above power-law sin

larities become logarithmic singularities,

C2;C3;C4; zln~ uq'u/m!z21/7 ~2.8a!

K; zln~ uq'u/m!z4/7, ~2.8b!

wherem is a wave-number scale. This logarithmic anoma
can be observed forj'uq'u!1, where

j'5m21 exp@32pAC1K3/~7TC4!#. ~2.9!

In the critical regime at smallC5 , we find the following
universal Poisson ratios:

C2
2/~C1C4!50 and C3 /C452 1

2 . ~2.10!

B. Nematic elastomers

At the transition from the isotropic to the nematic pha
liquid-crystalline elastomers undergo an anisotropic stre
relative to their isotropic reference state of a factorL0i along
the nematic axis andL0' perpendicular to it. In the absenc
of explicit uniaxial terms such as

hE dd'x'E dxdFudd2
1

d
uii G , ~2.11!

the elastic energy of the nematic phase that forms spont
ously from an isotropic phase is soft, i.e., the elastic cons
C5 for shears in the uniaxial plane vanishes. After rescal
lengths measured relative to the anisotropic nematic re
ence state and displacements according toxa→xa , xd

→Ar 21xd , ua→ua , and ud→Ar 21ud , where r
5L0i

2 /L0'
2 , the relevant parts of the elastic energy can

written when uniaxial terms are present and small as
02180
-

,
h

e-
nt
g
r-

e

H5 1
2 E dd'x'E dxd$C1vdd

2 1K~“'
2 ud!212C2vddvaa

1C3vaa
2 12C4vab

2 1C5vad
2 %, ~2.12!

with nonstandard strainsvab5 1
2 (]aub1]bua2]aud]bud),

vdd5]dud1 1
2 ]aud]bud , and vad5 1

2 ]aud and where C5
goes linearly to zero withh or the magnitude of othe
uniaxial terms.

The scaling of the inverse displacement correlation fu
tions of NE’s is similar to but not identical to that of the CS
model,

Gdd~q' ,qd!5
K

T
L'

24,42hK

3F̂ddS L'q'

,
,
Ldqd

,f ,
C5

K

L'
2

,1/nh
,
C1

C4

1

,hCD ,

~2.13a!

Gad~q' ,qd!5
C2

T
L'

21Ld
21,11f

3F̂adS L'q'

,
,
Ldqd

,f ,
C5

K

L'
2

,1/nhD ,

~2.13b!

Gab~q' ,qd!5
C3

T
L'

22,2

3F̂abS L'q'

,
,
Ldqd

,f ,
C5

K

L'
2

,1/nh
,
C4

C3
,hCD ,

~2.13c!

where, to first order in«

hK538e/59, hC54e/59, ~2.14a!

f52221«/59, nh51/219«/108, ~2.14b!

and

L';@AK3/~C4T2!#1/«, ~2.15a!

Ld5AC4 /KL'
2 . ~2.15b!

Note that four independent scaling exponentshK , hC , f,
and nh are required to describe NE’s with a small uniax
energy. In the above, lengths, displacements, andq vectors
are measured in rescaled units.

The above scaling forms predict thatC1 , C2 , andC3 are
unrenormalized and that

C4;H ~L'uq'u!hC if jhuq'u@1, qd50

~Ldqd!hC /f if jhuq'uLd /L'@1, q'50

~L'jh
21!hC if ~q' ,qd!5~0,0!

~2.16!
7-3
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as well as

K;H ~L'uq'u!2hK if jhuq'u@1, qd50

~Ldqd!2hK /f if jhuq'uLd /L'@1, q'50

~L'jh
21!2hK if ~q' ,qd!5~0,0!

~2.17!

with jh given by

jh5L'~L'
2 h/K !2nh. ~2.18!

At small but nonzeroh, Gdd;hghq'
2 1Kq'

4 at smallq, where
gh5(22hh)nh andK is given by the last expression in Eq
~2.17!.

At exactly three dimensions, the above power laws
come

C4;u ln~ uq'u/m!u24/59, ~2.19a!

K;u ln~ uq'u/m!u38/59. ~2.19b!

The length scale that marks the crossover from harmoni
logarithmic behavior is

j'5m21 exp@64pAK3/~7A6C4T!#. ~2.20!

Provided thatC5 is small, the critical regime entails fou
independent Poisson ratios,

C2 /C151, C3 /C151, C4 /C150, ~2.21a!

~2C22C32C1!/C45 1
2 . ~2.21b!

III. CRITICALLY SOFT ELASTOMERS

A. The model

We start by setting up a field-theoretic minimal model f
CSE’s that is suitable for our subsequent RG analysis.
find it convenient to use the Lagrangian formulation of el
ticity @26,27#. In this formulation, the mass points of th
equilibrium undistorted medium are labeled by their posit
vectorsx in d-dimensional~reference! space. When the me
dium is distorted, a mass point originally atx is mapped to a
new pointR(x) in d-dimensional~target! space. SinceR(x)
5x when there is no distortion, it is customary to introdu
the phonon variableu(x)5R(x)2x that measures the devia
tion of R(x) from x.

Suppose for a moment the medium is distorted solely
stretching. The energy of the distorted state relative to
reference state depends on the relative amount of stretc
dR22dx252ui j dxidxj , where

ui j 5
1
2 $] iuj1] jui1] iuk] juk% ~3.1!

with i , j ,k51,...,d @28# are the components of the familia
nonlinear Lagrangian strain tensoru= . Note thatu= is invariant
under arbitrary rotations in target space. This feature ma
the Lagrangian strain tensor an adequate variable for for
lating elastic energies because all elastic media are rota
ally invariant in target space. This invariance is easy to
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derstand: different physical orientations of the same sam
have the same energy@29#. As is customary, the referenc
state, relative to whichu= is defined, is taken to be in me
chanical equilibrium, and hence no terms linear inui j appear
in the stretching energy. To lowest order, the stretching
ergy is then of the form

Hst5
1
2 E ddx Ki jkl ui j ukl , ~3.2!

whereKi jkl is an elastic constant tensor. For media isotro
in the reference space, for example, there are only two in
pendent elastic constants inKi jkl that are known as the Laḿ
coefficientsl and m. Media with uniaxial symmetry in the
reference space are characterized in general by five inde
dent elastic constants. Assuming that the anisotropy axis
the êd5(0,...,1) direction, we may write the stretching e
ergy as

Hst5
1
2 E dd'x'E dxd$C1udd

2 12C2udduaa1C3uaa
2

12C4uab
2 1C5uad

2 % ~3.3!

with d'5d21 anda,b51,...,d' .
Now suppose that the elastic constantC5 vanishes. Re-

writing Hst in Fourier space, one sees easily that the stre
ing energy cost is zero for phonon displacementsũ(q) per-
pendicular toêd with momentumq parallel to êd and for
ũ(q) parallel to êd with q perpendicular toêd . In other
words, CSE’s are soft elastic materials.

For many elastic systems it is justified to neglect energ
contributions, such as bending, that are associated
higher derivatives of the displacements. That is beca
bending is unimportant compared to stretching at small m
menta. Due to the soft elasticity, however, the stretching
ergy of CSE’s can vanish, and hence bending is importa

For the moment, we set aside the uniaxial term prop
tional to C5 and concentrate on the pure soft case. The
fects of a small but nonvanishingC5 will be included later
on. Taking into account stretching and bending, the C
model is defined by the Hamiltonian

H5 1
2 E dd'x'E dxd$C1udd

2 1K~“'
2 ud!212C2udduaa

1C3uaa
2 12C4uabuab%, ~3.4!

whereK is a bending modulus. All other bending terms a
lowed by symmetry turn out to be irrelevant in the sense
the renormalization group. Also, not all parts of the stra
are relevant. Discarding any parts of the strains that lea
irrelevant contributions to the Hamiltonian, as discussed
ther below, leaves us with

uab5 1
2 $]aub1]bua1]aud]bud% ~3.5a!

and

udd5]dud . ~3.5b!
7-4



th
,

ly

n
h
s
in

y

-

m

its

is
gl

at

us

o

-
ing

es-

tor

y,

sal
f
et
us
r of
ry.

the

up
uire

ec-
c-

rm,

ion,
we

ANOMALOUS ELASTICITY OF NEMATIC AND . . . PHYSICAL REVIEW E69, 021807 ~2004!
In principle, we could useH as it stands in Eq.~3.4! for our
RG analysis. We find it convenient, however, to reduce
number of constants featured inH at the onset. To this end
we rescale ua→(K/C4)ua , ud→AK/C4ud , and xd
→(C4 /K2)xd . Then the Hamiltonian takes on the form

H5 1
2 E dd'x'E dxd$vudd

2 1~“'
2 ud!212gudduaa1 f uaa

2

12uabuab%, ~3.6!

where

v5C1K3/C4
2, g5C2~K/C4!3/2, f 5C3 /C4 . ~3.7!

At this stage we would like to point out that we explicit
keep the temperatureT in the Boltzmann weight exp
(2H/T) @30# governing our field-theoretic calculations. I
what follows, we carry out a perturbation expansion in t
temperature, i.e.,T serves as our expansion parameter. A
consequence, not only the constants and fields featuredH
but also the temperature will require renormalization.

An effective Hamiltonian forud alone can be obtained b
integrating out the transverse variableua from the full CSE
Hamiltonian of Eq.~3.4!. WhenC45`, this process leads to
the Hamiltonian for a smectic-A liquid crystal whose anoma
lous elasticity was analyzed by Grinstein and Pelcovits@22#.
Our rescaling of variables to obtain Eq.~3.6! with the coef-
ficients of both (“'

2 ud)2 and 2uabuab set to unity is not
ideally suited to taking theC45` limit. Our primary interest
is the anomalous elasticity unique to soft uniaxial syste
for which the parametrization of Eq.~3.6! is appropriate. We
will not give further consideration to the Grinstein-Pelcov
limit of our model.

As a further step towards our RG analysis, we now d
cuss the scaling symmetries of our model. First, under a
bal rescaling of the coordinatesxa→m21xa and xd
→m22xd , we find a scaling invariant theory provided th
ua→mua and T→m32dT ~m invariance!. Viewing m as an
inverse length scale, this means that the fieldua has a naive
dimension 1 and that the naive dimension ofT is «532d.
The fieldud and the remaining parameters inH have a van-
ishing naive dimension. Aboved53 dimensions, the naive
dimension ofT is negative andT is irrelevant, whereas it is
relevant belowd53. Hence, we identifydc53 as the upper
critical dimension of the CSE model.

At this point we take a short detour and catch up on j
tifying the truncation of the strains as stated in Eqs.~3.5!.
Applying them rescaling to the original full strains leads t

uab→
m2

2
$]aub1]bua1]aud]bud1m2]auc]buc%

~3.8a!

and

udd→m2H ]dud1
m2

2
~]dud!21

m4

2
]duc]ducJ . ~3.8b!
02180
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The terms carrying extra powers ofm do not contribute to the
leading behavior in the limitm→0. Hence, they can be ne
glected in studying the long length scale behavior at lead
order, i.e., they are irrelevant in the sense of the RG.

Second, due to the anisotropy of the model, we may r
cale the longitudinal coordinate alone:xd→bxd . Scale in-
variance is retained ifv→b2v, g→bg, andT→bT ~b in-
variance!. Note that the composed couplings

s5g2/v, r5 f , and t5m2«T/Av ~3.9!

are invariant under the longitudinal rescaling. The fac
m2« is included in the definition oft to render it, likes and
r, dimensionless. As we go along, we will see thats, r, and
t emerge quite naturally in perturbation theory. Third,H is
invariant under the rescalingud→ud1 f d(x'), where f d is
an arbitrary function of the transversal coordinatex' .
Fourth, rescalingua→ua1 f a(xd)1Mabxb leavesH invari-
ant if the matrix constituted by theMab is antisymmetric and
f a is a function of the longitudinal coordinate only. Finall
H is invariant under the transformationua→ua1udud and
ud→ud2uaxa provided that theu’s are small. Note that this
transformation mixes the longitudinal and the transver
fields ~mixing invariance!. It can be viewed as a remnant o
the rotational invariance of the original theory in targ
space. This mixing transformation will be valuable for
because it leads to Ward identities that reduce the numbe
vertex functions to be calculated in perturbation theo
These Ward identities will be derived in Appendix A.

B. Renormalization-group analysis

In this section, we determine the scaling behavior of
correlation function of the fieldsua(x) and ud(x) by using
perturbation theory augmented by renormalization gro
methods. As usual, we analyze vertex functions that req
renormalization due to the presence of ultraviolet~UV! di-
vergences in Feynman diagrams. Our main tools in this s
tion will be dimensional regularization and minimal subtra
tion. To avoid infrared~IR! singularities in the Feynman
diagrams, we supplement our Hamiltonian with a mass te

H→H1
t

2 E dd'x'E dxdud
2. ~3.10!

At the appropriate stage of the calculations, we then sentt to
zero to recover the original situation.

1. Diagrammatic expansion

In order to set up a diagrammatic perturbation expans
we have to determine its constituting elements. First,
have the Gaussian propagatorG= that has the form of ad
3d matrix. The elements of its inverseG= are readily col-
lected from the Hamiltonian,

Gdd5T21@t1vqd
21q'

4 #, ~3.11a!

Gad5T21gqaqd , ~3.11b!
7-5
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Gab5T21@~ f 11!qaqb1dabq'
2 #. ~3.11c!

Inverting G= , we find that the Gaussian propagator has
elements

Gdd5T
B

Bt1Aqd
21Bq'

4 , ~3.12a!

Gad5T
2g

Bt1Aqd
21Bq'

4

qaqd

q'
2 , ~3.12b!

Gab5TFdab

q'
2 2

Dt1Cqd
21Dq'

4

Bt1Aqd
21Bq'

4

qaqb

q'
4 G , ~3.12c!

where we have used the shorthand notationsA5v( f 12)
2g2, B5 f 12, C5v( f 11)2g2, and D5 f 11. Second,
our diagrammatic expansion features the four vertices

i
g

2T
qd

~1!qb
~2!qb

~3! , ~3.13a!

i
f

2T
qd

~1!qb
~2!qb

~3! , ~3.13b!

i
1

T
qa

~2!qb
~1!qb

~3! , ~3.13c!

2
f 12

8T
qa

~1!qa
~2!qb

~3!qb
~4! . ~3.13d!

It is understood that the sum of the momenta has to vanis
each vertex.

Next, we need to determine which of the vertex functio
G (M ,N) with M externalua legs andN externalud legs are
superficially UV-divergent. Analyzing their topology, we fin
that the superficial degree of divergenced of our diagrams is
given at the upper critical dimension byd542M22D i

2D' , whereD i (D') is the number of longitudinal~trans-
versal! derivatives on the external legs. Thus, the only ver
functions containing superficially divergent diagrams a
Gd

(0,1) , Ga
(1,0) , Gdd

(0,2) , Gad
(1,1) , Gab

(2,0) , Gddd
(0,3) , Gadd

(1,2) , and
Gdddd

(0,4) . All these vertex functions have to be taken into a
count in the renormalization procedure. By virtue of the m
ing invariance, however, there exist several relations betw
the vertex functions in the form of Ward identities. These
derived and stated in Appendix A. Due to these Ward id
tities, it is sufficient for our purposes to actually calculate t
two-point functionsGdd

(0,2) , Gad
(1,1) , andGab

(2,0) . Once the equa-
tions of stateGd

(0,1)50 and Ga
(1,0)50 are satisfied and th

two-point functions are renormalized, the Ward identit
guarantee that the remaining vertex functions are cured
their UV divergences.

We calculate the two-point vertex functions to one-lo
order using dimensional regularization. The Feynman d
grams entering this calculation are listed in Figs. 1–3. D
tails on computing the diagrams can be found in Appendix
Our results for the two-point functions read
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Gdd
~0,2!5T21@t1vqd

21q'
4 #2

A21 f g2qd
2

16p«A2g21~21 f !v
t2«/4

2
3~11 f !q'

4

8p«A21 fA2g21~21 f !v
t2«/4, ~3.14a!

Gad
~1,1!5T21gqaqd2

A21 f ~11 f !gqdqa

16p«A2g21~21 f !v
t2«/4,

~3.14b!

Gab
~2,0!5T21@~ f 11!qaqb1dabq'

2 #

2
A21 f @2~11 f !2qaqb1dabq'

2 #

32p«A2g21~21 f !v
t2«/4.

~3.14c!

FIG. 1. Feynman diagrams contributing toGdd . The dashed
lines symbolize the elementGdd of the Gaussian propagator. Line
half dashed and half solid with an index, saya, stand forGad . Solid
lines with two indices, saya andb, visualizeGab . The ticks indi-
cate derivatives with respect to the reference space coordinate
an index specifying the component.
7-6
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As already indicated by the vertex functions’ superficial d
gree of divergence, higher-order terms in the momentum
pansion are convergent and hence can be neglected fo
purposes. Likewise, contributions proportional to the mast
are convergent. Thus,t does not require renormalization an
consequently its scaling dimension is identical to its na
dimension 4. At this stage of the calculation,t has fulfilled
its purpose, viz., it prevented IR singularities from produci
spurious« poles. In conjunction with the« expansion, we
can now safely sendt to zero.

2. Renormalization

The UV divergences have their manifestation in the«
poles appearing in Eqs.~3.14!. We eliminate these poles b
employing the renormalization scheme

ud→ůd5Z1/2ud , ~3.15a!

ua→ůa5Zua , ~3.15b!

T→T̊5ZZT
21T, ~3.15c!

v→v̊5ZT
21Zvv, ~3.15d!

g→g̊5Z21/2ZT
21Zgg, ~3.15e!

f→ f̊ 5Z21ZT
21Zf f , ~3.15f!

where the overcircle indicates unrenormalized quantit
Our scheme is chosen so that the Hamiltonian retains
original structure,

H
T

→ 1

2T E dd'x'E dxd$Zvvudd
2 1ZT~¹'

2 ud!2

12Zggudduaa1Zf f uaa
2 12ZTZuabuab%. ~3.16!

The simplest way of determining the renormalizationZ fac-
tors is minimal subtraction. In this procedure, theZ factors
are chosen so that they solely cancel the« poles and other-
wise leave the vertex functions unchanged. Expresse
terms of the effective couplings introduced in Sec. III A, o
Z factors are of the structure

Z...~ t,s,r!511 (
m51

` X
¯

~m!~ t,s,r!

«m . ~3.17!

The X
¯

(m)(t,s,r) are expansions in the effective temperatu
t beginning with the powertm. It is a fundamental fact of

FIG. 2. Feynman diagrams contributing toGad . The meaning of
the symbols is the same as in Fig. 1.
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renormalization theory, cf. Ref.@23#, that this procedure is
suitable to eliminate all the UV divergences~not only the
superficial ones! from any vertex function order by order i
perturbation theory. To one-loop order we find that ourZ
factors are given by

Z511t
14113r

32p«A21rA21r2s
, ~3.18a!

ZT512t
3~11r!

8p«A21rA21r2s
, ~3.18b!

Zv511t
A21rs

16p«A21r2s
, ~3.18c!

Zg511t
A21r~11r!

8p«A21r2s
, ~3.18d!

Zf511t
A21r~114r12r2!

32p«A21r2s
. ~3.18e!

3. Scaling 1: RG equation and its solution

Next, we infer the scaling behavior of a vertex functio
from a RG equation. This RG equation is a manifestation
the fact that the unrenormalized theory has to be indepen
of the arbitrary length scalem21 introduced by renormaliza
tion. By virtue of this independence, the unrenormalized v
tex functions satisfy the identity

m
]

]m
G̊~M ,N!~$q' ,qd%;v̊,T̊,g̊, f̊ !50. ~3.19!

The identity~3.19! translates via the Wilson functions@31#

g
¯

5m
]

]m
ln Z

¯U
0

, ~3.20a!

z5m
] ln v

]m U
0

5gT2gv , ~3.20b!

b t5m
]t

]mU
0

5t~2«2g1 1
2 gT1 1

2 gv!, ~3.20c!

FIG. 3. Feynman diagrams contributing toGab . The meaning of
the symbols is the same as in Fig. 1.
7-7
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bs5m
]s

]mU
0

5s~g1gT1gv22gg!, ~3.20d!

br5m
]r

]mU
0

5r~g1gT2g f ! ~3.20e!

into the Gell-Mann-Low RG equation

FDm2S M1
N

2 DgGG~M ,N!~$q' ,qd%;v,t;s,r,m!50.

~3.21!

Here we have used the shorthand notation

Dm5m
]

]m
1vz

]

]v
1b t

]

]t
1bs

]

]s
1br

]

]r
. ~3.22!

The Wilson g functions are easily gathered from th
renormalization factors stated in Eqs.~3.18! upon reexpress
ing m(]/]m) as b t(]/]t). Because the Wilson function
must be finite, one then immediately gets

g
¯

~ t,s,r!52t] tX¯

~1!~ t,s,r!, ~3.23!

whereX
¯

(1) is defined in Eq.~3.17!. Since we will need them
to determine the fixed points of the RG flow, we state
Wilson b functions explicitly,

b t52t«1t2
20119r22s2rs

32pA21rA21r2s
, ~3.24a!

bs5t
A21rs~314r22s!

32pA21r2s
, ~3.24b!

br5t
217r17r212r3

32pA21rA21r2s
. ~3.24c!

To solve the RG equation, we employ the method of ch
acteristics. We introduce a flow parameter, and look for
functions m̄(,), Z̄(,), v̄(,), t̄ (,), s̄(,), and r̄(,) deter-
mined by the characteristic equations

,
]m̄~, !

],
5m̄, m̄~1!5m, ~3.25a!

,
]

],
ln Z̄~, !5g„ t̄ ~, !,s̄~, !,r̄~, !…, Z̄~1!51,

~3.25b!

,
]

],
ln v̄~, !5z„ t̄ ~, !,s̄~, !,r̄~, !…, v̄~1!5v,

~3.25c!

,
]

],
t̄~, !5b t„ t̄ ~, !,s̄~, !,r̄~, !…, t̄ ~1!5t,

~3.25d!
02180
e
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,
]

],
s̄~, !5bs„s̄~, !,s̄~, !,r̄~, !…, s̄~1!5s,

~3.25e!

,
]

],
r̄~, !5br„ t̄ ~, !,s̄~, !,r̄~, !…, r̄~1!5r.

~3.25f!

These characteristics describe how the parameters trans
if we change the momentum scalem according to m
→m̄(,)5,m. Being interested in the IR behavior of th
theory, we focus on the limit,→0. In this IR limit, we find
that the set of coupling constants„ t̄ (,),s̄(,),r̄(,)… flows to
a stable fixed point,

~ t* ,s* ,r* !5S 32p«

7
,0,2

1

2D ~3.26!

satisfying b t(t* ,s* ,r* )5bs(t* ,s* ,r* )5br(t* ,s* ,r* )
50. Recalling thats5g2/v and r5 f , we learn that the
stable fixed point implies two universal ratios of the elas
moduli ~Poisson ratios!,

C2
2/~C1C4!50 and C3 /C452 1

2 . ~3.27!

Note that the longitudinal and the transversal directions
effectively decoupled at the IR stable fixed point. In additi
to the stable fixed point, there are four unstable fixed poi
viz., the zero-temperature fixed pointt* 50 as well as
~32p«,0,21!, (64A2/3p«/13,1/2,21/2), and (32A2/3p«,
21/2,21).

With the help of the characteristics, the RGE is read
solved, at least formally,

G~M ,N!~$q' ,qd%;v,t,s,r,m!

5Z̄~, !2~M1N/2!

3G~M ,N!~$q' ,qd%;v̄~, !, t̄ ~, !,s̄~, !,r̄~, !,m, !.

~3.28!

As it stands, Eq.~3.28! does not account for the naive d
mensions of its ingredients. Recalling them invariance of the
HamiltonianH, it is straightforward to check that

G~M ,N!~$q' ,qd%;v,t,s,r,m!

5m2~d11!1dM1~d11!N

3G~M ,N!S H q'

m
,

qd

m2J ;v,t,s,r,1D . ~3.29!

Moreover, theb invariance tells us that
7-8
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G~M ,N!~$q' ,qd%;v,t,s,r,m!

5b~M1N21!G~M ,N!S H q' ,
qd

b J ;b2v,t,s,r,m D
5v2~M1N21!/2G~M ,N!~$q' ,v1/2qd%;1,t,s,r,m!,

~3.30!

where the last line reflects our freedom to chooseb
5v21/2. Combining Eqs.~3.28! and~3.29!, we find that the
scaling behavior of the vertex functions is described by

G~M ,N!~$q' ,qd%;v,t,s,r,m!

5~m, !2~d11!1dM1~d11!NZ̄~, !2~M1N/2!

3G~M ,N!S H q'

m,
,

qd

~m, !2J ;

v̄~, !, t̄ ~, !,s̄~, !,r̄~, !,m, D . ~3.31!

Due to Eq.~3.30!, we may also write

G~M ,N!~$q' ,qd%;v,t,s,r,m!

5~m, !2~d11!1dM1~d11!NZ̄~, !2~M1N/2!

3v̄~, !2~M1N21!/2

3G~M ,N!S H q'

m,
,
v̄~, !1/2qd

~m, !2 J ;

1,t̄ ~, !,s̄~, !,r̄~, !,m, D . ~3.32!

We have to mention that Eqs.~3.31! and ~3.32! do not cor-
rectly describeGab

(2,0) at q'50 because we omitted a dange
ously irrelevant bending of the typeKdqd

4. Without such a
term, Eqs.~3.31! and ~3.32! unphysically suggest that th
to
g

02180
leading scaling behavior ofGab
(2,0) is independent ofqd for

q'50. In other words,Kd is dangerously irrelevant as far a
the leading behavior ofGab

(2,0) at q'50 is concerned. Becaus
Kd is irrelevant, its omission has no impact on the lead
behavior of the relevant elastic constants and hence doe
affect our main results. Of course one could~and it would be
interesting to! investigate the scaling behavior ofKd . One
has to keep in mind, however, that irrelevant terms tend
mix under renormalization with a whole bunch of other
relevant terms, making a proper RG analysis a tedious
deavor. This will be left to future work.

4. Scaling 2: Physical quantities

The variables we considered so far in our RG analysis
the benefit of being convenient. The flip side of this conv
nience is, however, that the featured quantities have no d
physical meaning. Now we recast our results so that th
physical content becomes pronounced.

To have a clear distinction between physical variables
the scaled variables we used in our calculations, we mark
latter in the remainder of this section with a hat, i.e., w
denote

q̂d5
C4

K2 qd , ûb5
C4

K
ua , ûd5AC4

K
ud . ~3.33!

It is not difficult to see that the relation between the physi
vertex functions and the vertex functions in the scaled v
ables is given by

G~M ,N!~$q' ,qd%;v,t,s,r,m!

5KM13N/222C4
12N/2Ĝ~M ,N!~$q' ,q̂d%;v,t,s,r,m!.

~3.34!

Blending Eq.~3.34! and our findings of Sec. III B 3, we
now obtain
G~M ,N!~$q' ,qd%;v,t,s,r,m!5
1

T
C1

2~M1N22!/2C4
~2M1N22!/2K2~M22!/2L'

2~d21!2dM2~d11!N

3,2~d11!1dM1~d11!N@v̄~, !/v#2~M1N21!/2Z̄~, !2~M1N/2!

3F̂~M ,N!S H L'q'

,
,
Av̄~, !/vLdqd

,2 J ; 1,t̄ ~, !,s̄~, !,r̄~, !,1D , ~3.35!
ical
ling
e
it.
where we introduced the susceptibilities

F̂~M ,N!5tĜ~M ,N! ~3.36!

to make explicit that the vertex functions are proportional
the inverse temperature. Moreover, we introduced the len
scales

L'5m21, ~3.37a!
th

Ld5
C4

K2

Av

m2 5AC1

K
L'

2 . ~3.37b!

At this stage,L' andLd are still arbitrary. Further below we
will fix these length scales so that they acquire a phys
meaning, viz., the borderline between harmonic and sca
behavior. Note that the result~3.35! is general in the sens
that it holds in the harmonic as well as in the scaling lim
7-9
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When t̄ ( l )'0, the system behaves approximately like a h
monic system. Whenl is small, behavior is determined b
the fixed point witht* ;e.

Now to our main goal, viz., the behavior of the elas
constants. The sought-after behavior can be inferred with
much effort from result~3.35!. As an example, we conside
the caseM50,N52 in some detail. In addition to the infor
mation contained in Eq.~3.35!, we need some knowledge o

the concrete form of the scaling functionF̂dd
(0,2) . Sincet* is

of order«, it is reasonable to assume thatF̂dd
(0,2) can be ap-

proximated by its Gaussian form@cf. Eq. ~3.11!# even in the
scaling limit. Hence, we write

F̂dd
~0,2!S H L'q'

,
,
Av̄~, !/vLdqd

,2 J ;1,t̄ ~, !,s̄~, !,r̄~, !,1D
5SAv̄~, !/vLdqd

,2 D 2

1S L'q'

, D 4

. ~3.38!

Merging Eqs.~3.38! and ~3.35!, we obtain the physical ver
tex function

Gdd
~0,2!~q' ,qd!5T21$C1~, !qd

21K~, !uq'u4% ~3.39!

with

K~, !5K,2«Z̄~, !21@ t̄ ~, !/t#21@v̄~, !/v#21/2,
~3.40a!

C1~, !5C1,2«Z̄~, !21@ t̄ ~, !/t#21@v̄~, !/v#1/2.
~3.40b!

In the case of the bending modulus, we cannot finalize
conclusions without solving the characteristics, i.e., with
knowing Z̄(,) and so on. ForC1 , however, we observe
without further information the following:

,
]

],
C1~, !52«2g2

b t

t
1

z

2
52gv . ~3.41!

Sincegv is proportional tos it vanishes at the stable fixe
point. Hence,C1 is independent of,. In other words,C1 is
normal. Of course, we cannot tell from our analysis if th
stays true beyond one-loop order. Nevertheless, this
well be the case.

The behavior of the remaining elastic constants can
extracted by similar means from the other two-leg ver
functions. We find

Gad
~1,1!~q' ,qd!5T21C2~, !qaqd , ~3.42a!

Gab
~2,0!~q' ,qd!5T21$C3~, !qaqb1C4~, !~qaqb1dabuq'u2!%

~3.42b!

with the anomalous elastic constants

C2~, !5C2,2«Z̄~, !23/2@ t̄ ~, !/t#21@s̄~, !/s#1/2,
~3.43a!
02180
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C3~, !5C3,2«Z̄~, !22@ t̄ ~, !/t#21@v̄~, !/v#21/2,
~3.43b!

C4~, !;C3~, !. ~3.43c!

To obtain the equation forC2(,), we used the fact that i
must be proportional toC2 and thus tos1/2. Note thats
affects the leading behavior ofC2 despite flowing to zero. In
other words,s is a dangerously irrelevant variable. Simila
arguments forC3 imply that C3(,) must be proportional to
r, which reaches a nonzero fixed-point value. There a
therefore, no contributions to the scaling ofC3 from danger-
ously irrelevant variables.

5. Behavior of the elastic constants in dË3

For «.0, we can assign a physical meaning to the hi
erto arbitrary length scaleL' via the definition of our dimen-
sionless temperaturet, viz.,

L'5SAC1K3t

C4T D 1/«

. ~3.44!

Of course, this choice also affects the length scaleLd , cf.
Eq. ~3.37b!. The length scalesL' andLd mark the borderline
between harmonic and critical behavior.

Below three dimensions, the solutions to the characte
tics are for ,!1 governed by the IR-stable fixed poin
Readily, one finds the power laws

Z̄~, !5,g* , ~3.45a!

v̄~, !5v,z* , ~3.45b!

where

g* 5g~ t* ,s* ,r* !525«/7, ~3.45c!

z* 5z~ t* ,s* ,r* !54«/7. ~3.45d!

From our discussion above, it is clear that we cannot sim
sets̄(,) equal to its fixed-point values* 50 becauses is a
dangerously irrelevant variable that effects the scaling
havior of C2 at leading order. The vanishing ofs is de-
scribed by

s̄~, !;s,w, ~3.45e!

with a Wegner exponentw5«/7 corresponding to the small
est eigenvalue of the Hessian of the flow near (t* ,s* ,r* ).

Combining the formal scaling form of Eq.~3.35! with the
power laws of Eq.~3.45! for Z̄(,), v̄(,)/v, ands̄(,)/s and
the crossover length scales as given in Eqs.~3.44! and
~3.37b!, we obtain a complete picture of the scaling behav
of the displacement vertex functions ind,3. In particular,
we obtain Eqs.~2.2! for the two-point functionsGdd

(0,2) ,
Gad

(1,1) , andGab
(2,0) with C550 featuring the scaling exponen

hK5«1g* 1z* /254«/7, ~3.46a!

hC52«22g* 2z* /25«/7, ~3.46b!
7-10
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h252«23g* /21w/25«/75hC , ~3.46c!

f522z* /25222«/75~42hK!/2. ~3.46d!

Thus, even though there are three independent expon
g* , z* , andw, the scaling behavior of the two-point func
tions is determined, at least to first order in«, by only two
exponents, sayhK and hC . Upon inserting the power law
~3.45! into Eqs. ~3.43! and ~3.40a!, we obtain the scaling
expressions forC2 , C3 , C4 , andK stated in Eqs.~2.5! and
~2.6! of the review section. Note thatK diverges at long
length scales whereasC2 , C3 , andC4 vanish in this limit.

6. Logarithmic behavior in dÄ3

Since« vanishes ind53, the solutions to the characteri
tic equations are no longer of power-law type. The flow
the temperature, for example, is described at leading or
i.e., for s̄(,)5s* and r̄(,)5r* , by

,
]

],
t̄~, !5

7

32p
t̄~, !2. ~3.47!

This differential equation is readily solved with the result

t̄ ~, !/t5F12
7t

32p
ln~, !G21

. ~3.48!

Similarly, we find Z̄(,);@ t̄ (,)/t#25/7, v̄(,);@ t̄ (,)/t#4/7,
ands(,);@ t̄ (,)/t#1/7 at leading order. Inserting these log
rithmic solutions into Eqs.~3.40a! and ~3.43!, we find that

K~q'!;KF12
7t

32p
ln~L'uq'u!G4/7

, ~3.49a!

C2~q'!;C2F12
7t

32p
ln~L'uq'u!G21/7

, ~3.49b!

C3~q'!;C4~q'!;C2~q'!. ~3.49c!

Of course,C1 is normal as it was ind,3. Once more,K
diverges at long length scales andC2 , C3 , andC4 vanish in
this limit.

Note that Eqs.~3.49! imply the existence of a nonlinea
crossover length scale, viz.,

j'5L' expS 32p

7t D5L' expS 32pAC1K3

7TC4
D . ~3.50!

For j'uq'u'1, the anomalous elastic constants are appro
mately harmonic whereas one has clearly anomalous be
ior for j'uq'u!1.

7. C5 as a relevant perturbation—Semisoft elasticity

Up to this point, we have excluded a term proportional
C5 , cf. Eqs.~2.1! and~3.3!, from the elastic energy of CSE’
because such a term destroys the soft elasticity. Now
establish contact to more conventional uniaxial elastom
02180
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by incorporating a small but nonvanishingC5 . As a conse-
quence, we find semisoft behavior.

Technically, we treatC5 as a perturbation to the CS
model. It turns out that this perturbation is relevant in t
sense of the RG. This situation is analogous to thef4 model
where a deviation from the critical temperature represen
relevant perturbation. Our central task will be to determ
the scaling exponent that governs the departure ofC5 from
zero.

Our analysis here is based on the full Hamiltonian~2.1!.
Carrying out them rescaling, it is straightforward to see th
not the entire strainuad is relevant and that it is sufficient to
keep

uad5 1
2 ]aud . ~3.51!

Applying the rescaling that led us from Eq.~3.4! to Eq.~3.6!,
we obtain

He5H1
e

2 E dd'x'E dxd]aud]aud , ~3.52!

with H as stated in Eq.~3.6! and wheree5C5 /(4K). Note
thate;m2, i.e., the naive dimension ofe is 2 and hencee is
clearly relevant.

The Gaussian part ofHe has an extra term compared toH
and hence the Gaussian propagator ofHe is different from
that ofH. Here, anyq'

4 in Eqs.~3.12! has to be replaced by
q'

4 1eq'
2 . The non-Gaussian terms ofHe andH are identical

and hence we still have the four vertices stated in Eqs.~3.13!.
To investigate the departure ofe from zero, we expand the

propagator to linear order ine. Then this expanded propaga
tor is used in our diagrammatic calculation. Of course,
zeroth order ine we retrieve our vertex functions~3.14!. The
first order in the expansion leads to an extra divergent te
in Gdd

(0,2) that is proportional toeq'
2 . To remove the extra

divergence, we introduce an additional renormalization f
tor via setting

e→e̊5ZT
21Zee. ~3.53!

From the diagrams depicted in Fig. 1, we extract that

Ze512t
615r1r2

16p«A21rA21r2s
. ~3.54!

The RGE for the vertex functions expanded to linear orde
e reads

FDm1ec]e2S M1
N

2 DgGG~M ,N!~$q' ,qd%;v,t,s,r,e,m!

50 ~3.55!

with Dm as stated in Eq.~3.22! and

c5m]m ln eu05gT2ge . ~3.56!

Setting up a characteristic fore,
7-11
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,
]

],
ln ē~, !5c„ t̄ ~, !,s̄~, !,r̄~, !…, ē~1!5e,

~3.57!

we find that this coupling flows ind,3 as

ē~, !;e,c* , ~3.58!

wherec* 5c(t* ,s* ,r* )52«/7. Now, the solution to the
RGE ~3.55! in conjunction with dimensional analysis tells u
that the scaling behavior ofGdd

(0,2) expanded to linear order in
e is given by

Gdd
~0,2!~q' ,qd ;v,t,s,r,e,m!

5~m, !42«Z̄~, !21Gdd
~0,2!

3S q'

m,
,

qd

~m, !2 ;v̄~, !, t̄ ~, !,s̄~, !,r̄~, !,
ē~, !

~m, !2,1D .

~3.59!

Next we switch back to physical variables. By performi
much the same steps as in Secs. III B 5 and III B 4, we ob
for d,3

Gdd
~0,2!~q' ,qd ;e!5

K

T
L'

24,42hK

3F̂dd
~0,2!S L'q'

,
,
Ldqd

,f ;
L'

2 e

,1/n5D ,

~3.60!

where we have dropped several arguments for notatio
simplicity and where

n55~22c* !2151/22«/28. ~3.61!

Thus,C5 plays the same role in this problem as tempe
ture plays in a traditional thermal phase transition. As in
thermal case, it is useful to introduce a correlation length

j55L'~eL'
2 !2n5;C5

2n5. ~3.62!

There are two interesting limits we can now consid
j5uq'u!1 and j5uq'u@1. In the first case,Gdd

(0,2) must be
proportional toq'

2 whenqd50 and toqd
2 whenq'50. Thus,

we obtain by choosing,5(j5 /L')2n5 from Eq. ~3.60!,

Gdd
~0,2!~q' ,qd ,e!

;
1

T H KL
'

2hKj5
2~22hK!q'

2 ;C5
g5q'

2 if qd50

C1qd
2 if q'50,

~3.63!

where

g55n5~22hK!5125«/14. ~3.64!
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The second limitj5uq'u@1 corresponds toC5→0, and we
must obtain the same scaling forms as we obtained forC5
50 with a correction term that vanishes with (j5uq'u)21/n5.

As we stated earlier, we have not included nonlinear ter
in our model Hamiltonian@Eq. ~3.4!# that are needed to sta
bilize the system whenC5,0. In particular, we have no
included terms (uaduad)

2;(]aud]aud)2, uaaubdubd ,
uabuadubd , uaa

2 ubdubd , uab
2 ucducd , and uaaubcubducd , all

of which have the same naive scaling dimension as the
monic terms in nonlinear strain that we retained in Eq.~3.4!.
Our expectation is that the general theory in which the
terms are included will have the same general form as
present theory with, however, a different stable fixed po
with, in particular, a nonzero value of the coefficient
(uaduad)

2. At such a fixed point,̂]aud& will develop a non-
zero value at negativeC5 that scales as (2C5)b, whereb
5(11 1

4 g* )n5 . This result can be obtained by observin
that Eq. ~3.35! for G (0,2) implies ]a

2Gdd(xd ,xa ,C5)

5,21g* /2]a
2Gdd(,21z* /2xd ,,xa ,,2n5C5), where]a8 is a de-

rivative with respect to,xa , and that Gdd(xd ,xa ,C5)
→^]aud&^]aud& asx→`.

IV. NEMATIC ELASTOMERS

Usual NE’s are either cross-linked in the isotropic or
the nematic phase. If synthesized in the isotropic phase,
uniaxial anisotropy arises via a spontaneous symm
breaking at the isotropic to nematic transition and is ass
ated with soft elasticity. Cross-linking in the nematic pha
on the other hand, permanently imprints the uniaxial anis
ropy into the material and leads to semisoft behavior. We w
start by studying the soft case. Further below, we will inclu
the effects of an imprinted uniaxial anisotropy to investiga
the semisoft case.

A. The model

Since the spontaneous symmetry axis of soft NE’s c
point in any direction, their elastic energy has to be rotatio
ally invariant not only in target space but also in referen
space. Both invariances are taken into account by writing
stretching energy as

Hst5E ddxH l

2
~ tru= !21m tru= 21A1~ tru= !31A2tru= tru= 2

1A3tru= 31B1~ tru= !41B2~ tru= 2!21B3~ tru= !2tru= 2

1B4tru= tru= 31B5tru= 4J , ~4.1!

with the first two expansion coefficients being the usu
Lamé coefficients. Of course, terms of higher than four
order are allowed by the symmetries of the system. Howe
these higher-order terms turn out to be irrelevant in the
sense and are hence neglected.

Suppose that the spontaneously uniaxially ordered e
tomer is described in equilibrium by an equilibrium stra
tensoru= 0 . Without loss of generality, we may assume th
the anisotropy axis lies in theêd direction and thatu= 0 is a
7-12
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diagonal matrix with the diagonal elementsu0aa5u0' and
u0dd5u0i . To describe deviations from the equilibrium co
figuration, we introduce the relative strain

w= 5u=2u= 0 ~4.2!

and to expandH in terms of w= . By dropping terms that
depend only onu= 0 , we find

Hst5E dd'x'E dxd$a1wdd1a2waa1b1wdd
2 1b2wddwaa

1b3waa
2 1b4wab

2 1b5wad
2 1c1wddwad

2 1c2waawbd
2

1c3wabwadwbd1d1wad
2 wbd

2 %, ~4.3!

where we have discarded terms that turn out to be irrelev
The new coefficientsa1 , a2 , b1 , and so on, depend on th
old coefficientsl, m, and so forth, as well as onu0i andu0' .

By virtue of the rotational invariance in reference spa
there exists a set of Ward identities relating to the ver
functions implicit in Eq.~4.3!. We derive these identities in
Appendix B. At zero-loop or mean-field level, these Wa
identities correspond to relations between the elastic c
stants in Eq.~4.3!,

a12a22sb550, ~4.4a!

b222b32sc250, b21b522b11sc150, ~4.4b!

b522b42sc350, c12c22c322sd150, ~4.4c!

wheres is an abbreviation foru0i2u0' . Sincew= describes
deviations from the equilibriumu= 0 , its thermal averagêw= &
has to vanish. At zero temperature, where the mean-field
proximation becomes exact, this means that the coeffici
of the linear terms in Eq.~4.3! must be zero. Equation~4.4a!
then leads to the observation thatb550 for u0iÞu0' . At
finite temperatures, thermal fluctuations become impor
and loop corrections renormalize the elastic constants inc
ing a1 , a2 , and b5 . For ^w= & to vanish, the renormalized
versions ofa1 and a2 have to satisfy equations of state
which a150 anda250 are the mean-field approximation
In the following, we will assume that we have chosena1 and
a2 appropriately so that their respective equations of state
satisfied. In other words, we assume that we expand a
the true equilibrium state. Then, the Ward identity~B11! gen-
eralizing Eq.~4.4a! guarantees that the renormalizedb5 van-
ishes foru0iÞu0' . The vanishing of the elastic constantb5
is the origin of the softness of NE’s, as can easily be seen
rewriting the nonvanishing terms of the Hamiltonian at lea
ing order in small deformations in Fourier space.

In what follows, we assume thata15a25b550. Exploit-
ing the relations~4.4!, we rewrite the stretching energy as

Hst5E dd'x'E dxd$b1vdd
2 1b2vddvaa1b3vaa

2 1b4vab
2 %,

~4.5!

where we have introduced the nonstandard strains
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vab5wab2s21wadwbd , ~4.6a!

vdd5wdd1s21wadwad . ~4.6b!

Next we castvab andvdd into a more familiar form. Recall
that the relative strainw= depends upon the displacementu
relative to the original isotropic state measured in the or
nal reference space coordinatex. It is more convenient, how-
ever, to work with a relative strainu= 8 that depends on the
displacementu8 relative to the equilibrium state of the NE
measured in the coordinatex8 of the corresponding uniaxia
reference state. The tensorsw= and u= 8 are related via~see,
e.g., Ref.@11#!

w= 5L= 0
Tu= 8L= 0 , ~4.7!

whereL= 0 is the so-called Cauchy deformation tensor of t
uniaxial equilibrium state.L= 0 andu= 0 provide equivalent de-
scriptions of this state and they are related via

u= 05 1
2 ~L= 0

TL= 021= !, ~4.8!

where 1= denotes thed3d unit matrix. Substituting the rela
tion ~4.7! into Eqs.~4.6!, we obtain

vab5
L0'

2

2 F]a8ub81]b8ua82
1

r 21
]a8ud8]a8ud8G , ~4.9a!

vdd5rL0'
2 F]d8ud81

1

2

1

r 21
]a8ud8]a8ud8G , ~4.9b!

where we have used Eqs.~3.5! and ~3.51! to expressu= 8. r
5L0i

2 /L0'
2 is the usual anisotropy ratio that characterizes

anisotropy of the uniaxial equilibrium state. In the steps le
ing to Eqs.~4.9! we have exploited thats5L0'

2 (r 21)/2. A
glance at Eqs.~4.9! shows that we can writev= in a simpler
and more traditional form by rescalingxa8→xa , xd8
→Ar 21xd , ua8→ua , and ud8→Ar 21ud . Incorporating
bending, we eventually arrive at the Hamiltonian

H5 1
2 E dd'x'E dxd$C1vdd

2 1K~“'
2 ud!212C2vddvaa

1C3vaa
2 12C4vab

2 %, ~4.10!

with the nonstandard strains

vab5 1
2 ~]aub1]bua2]aud]bud!, ~4.11a!

vdd5]dud1 1
2 ]aud]bud . ~4.11b!

Here, we exclusively retained the only bending te
that is relevant in the RG sense. The new elastic c
stants C

¯
are proportional to the b

¯
in

Eq. ~4.5!: C152b1L0'
4 r 2Ar 21, C25b2L0'

4 rAr 21, C3

52b3L0'
4 Ar 21, andC45b4L0'

4 Ar 21.
A comment regarding the rescaling ofxd is called for. Our

rescalingsxd8→Ar 21xd andud8→Ar 21ud only make sense
if r .1. We have assumed that the nematic phase is cha
terized byr .1. Nematic phases withr ,1 are also possible
7-13
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In this case, our rescalings would be different. At a seco
order phase transition,r 21 will tend to zero. The transition
from the isotropic to the nematic elastomer phase is fi
order in all dimensions above 2. The order of the transition
two dimensions has not yet been established. A second-o
transition would have unusual properties since the coe
cients of the nonlinear contributions to the nonlinear strain
Eqs.~4.9! diverge asr→0.

Instead of using the Hamiltonian~4.10! or our RG analy-
sis, we find it convenient to reduce the number of consta
featured in the statistical weight exp(2H/T) by rescalingT
→AK3/C4T, xd→AC4 /Kxd , ud→AK/C4ud , and ua
→(K/C4)ua . This gives us finally

H
T

5
1

2T E dd'x'E dxd$vvdd
2 1~“'

2 ud!2

12gvddvaa1 f vaa
2 12vab

2 %, ~4.12!

where

v5C1 /C4 , g5C2 /C4 , f 5C3 /C4 . ~4.13!

Like the parametrization of Eq.~3.6! of the Hamiltonian for
CSE’s, the parametrization of Eq.~4.12! is not appropriate
for taking theC4→` limit to obtain a smectic-A Hamil-
tonian. As was the case for CSE’s, we are interested in p
erties unique to NE’s, and we will not consider the Grinste
Pelcovits limit of our model.

Formally, the Hamiltonians~3.6! and ~4.12! look very
similar. One has to bear in mind, however, that the strainu=
and w= are different. In fact, the scaling symmetries of Eq
~3.6! and ~4.12! are quite different except for them invari-
ance. The naive dimensions of the fields, the temperature
the coupling constants are the same for the two models
particular, NE’s and CSE’s have a mutual upper critical
mensiondc53. Though both systems possess a mixing
variance, the specific forms of these invariances are disti
the NE Hamiltonian is invariant under the transformati
ua(xc ,xd)→ua(xc2ucxd ,xd)1uaud(xc ,xd) and ud(xc ,xd)
→ud(xc2ucxd ,xd)1uaxa provided that theu’s are small.
This mixing invariance is reminiscent of the original refe
ence space rotation symmetry. In our current approach
NE’s, the b invariance of CSE’s has no counterpart. Ho
ever, in Appendix D we present an alternative formulati
that features ab invariance at the cost of having an ext
scaling parameter. Due to the different forms of the stra
the remaining symmetries stated at the end of Sec. III A h
no analog in NE’s.

B. Renormalization group analysis

The diagrammatic perturbation expansions for CSE’s
NE’s are similar. Instead of repeating the details, we w
highlight the differences. In contrast, the RG behavior
CSE’s and NE’s is quite different due to the varying scali
symmetries.
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1. Diagrammatic expansion

It is not difficult to see that the Gaussian propagator
NE’s coincides with that for CSE’s, see Eqs.~3.12!. The
differences betweenu= andv= , however, lead to different ver
tices. For NE’s we have

i
v2g

2T
qd

~1!qb
~2!qb

~3! , ~4.14a!

i
g2 f

2T
qa

~1!qb
~2!qb

~3! , ~4.14b!

i
1

T
qa

~2!qb
~1!qb

~3! , ~4.14c!

2
v22g1 f 12

8T
qa

~1!qa
~2!qb

~3!qb
~4! . ~4.14d!

Of course the sum of the momenta has to vanish at e
vertex. Note that the vertices~3.13! and ~4.14! are of the
same structure. Merely the coupling constants appear in
ferent combination. Hence, the Feynman diagrams for b
models have the same topology, or in other words, the t
leg diagrams for both models can be drawn as in Figs. 1
Moreover, the same type of vertex functions is superficia
divergent. By virtue of the NE mixing invariance, there e
ists a set of Ward identities relating the NE vertex functio
These identities are derived and stated in Appendix C. T
guarantee that we merely have to calculate the two-p
functions. Appendix E describes details of our calculation
the NE Feynman diagrams. Our results for the two-po
functions read

Gdd
~0,2!5T21@t1vqd

21q'
4 #2

A21 f ~g2v!2qd
2

16p«A2g21~21 f !v
t2«/4

2
@4g1g222~61v!2 f ~121v!#q'

4

32p«A21 fA2g21~21 f !v
t2«/4,

~4.15a!

Gad
~1,1!5T21gqaqd2

A21 f ~11 f 2g!~g2v!qdqa

16p«A2g21~21 f !v
t2«/4,

~4.15b!

Gab
~2,0!5T21@~ f 11!qaqb1dabq'

2 #

2
A21 f @2~11 f 2g!2qaqb1dabq'

2 #

32p«A2g21~21 f !v
t2«/4.

~4.15c!

2. Renormalization

We eliminate the« poles from the NE vertex functions b
employing the renormalization scheme

xd→ x̊d5Z21/2xd , ~4.16a!
7-14
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ud→ůd5Z1/2ud , ~4.16b!

ua→ůa5Zua , ~4.16c!

T→T̊5Z1/2ZT
21m«t, ~4.16d!

v→v̊5Z21ZT
21Zvv, ~4.16e!

g→g̊5Z21ZT
21Zgg, ~4.16f!

f→ f̊ 5Z21ZT
21Zf f . ~4.16g!

Our renormalizations are devised so that the strainsvab and
vdd as well as our Hamiltonian remain invariant in form,

H
T

→ 1

2T E dd'x'E dxd$Zvvvdd
2 1ZT~“'

2 ud!2

12Zggvdduaa1Zf f vaa
2 12ZTZvabvab%. ~4.17!

The scheme~4.16! follows closely the approach develope
by Grinstein and Pelcovitz@22#. Of course, other reparam
etrizations are conceivable. In Appendix D, we present
alternative formulation with a different renormalizatio
scheme in which neither the elastic displacement norxd is
renormalized.

In our current formulation, there remains no scaling
variance of the Hamiltonian that can be exploited to furth
reduce the number of coupling constants. Hence, the re
malization factors are functions of the original dimensionle
parameterst, v, g, andf rather than of a reduced number
effective couplings. The structure of the NE renormalizat
factors is

Z...~ t,v,g, f !511 (
m51

` X
¯

~m!~ t,v,g, f !

«m ~4.18!

with X
¯

(m)(t,v,g, f ) being a power series in the effectiv
temperaturet beginning with the powertm. To one-loop or-
der we find from Eq.~4.15! via minimal subtraction

Z511t
4g1g222~71v!2 f ~131v!

32p«A21 fA2g21~21 f !v
, ~4.19a!

ZT512t
4g1g222~61v!2 f ~121v!

32p«A21 fA2g21~21 f !v
, ~4.19b!

Zv511t
A21 f ~g2v!2

16p«vA2g21~21 f !v
, ~4.19c!

Zg511t
A21 f ~11 f 2g!~g2v!

16p«gA2g21~21 f !v
, ~4.19d!

Zf511t
A21 f @114~ f 2g!12~ f 2g!2#

32p« fA2g21~21 f !v
. ~4.19e!
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3. Scaling 1: RG equation and its solution

The RGE for the NE vertex functions follows as usu
from the fact that the unrenormalized theory has to be in
pendent of the arbitrary length scalem21 introduced by
renormalization. Instead of working with the original param
etersv, g, andf, we prefer to switch to

k5g/v5C2 /C1 , r5 f /v5C3 /C1 , ~4.20a!

s51/v5C4 /C1 . ~4.20b!

This step turns out to be helpful in studying the RG flo
because some of the original parameters tend to flow to
finity. We will see shortly that, on the other hand,k, r, ands
flow to finite values. Our RGE reads

FDm2S M1
N

2 DgGG~M ,N!~$q' ,qd%;t,k,r,s,m!50

~4.21!

with the RG differential operator

Dm5m]m2
g

2
qd]qd

1b t] t1bk]k1br]r1bs]s .

~4.22!

The Wilsonb functions, from which we determine the fixe
points of the RG flow, are given in terms of the Wilsong
functions

g
¯

5m
]

]m
lnZ...U

0

~4.23!

by

b t5t~2«1gT2g/2!, ~4.24a!

bk5k~gv2gg!, ~4.24b!

br5r~gv2g f !, ~4.24c!

bs5s~gv2gT2g!. ~4.24d!

The Wilsong functions are readily extracted from the reno
malization factors with the result

g
¯

52t] tX¯

~1!~ t,v,g, f !. ~4.25!

Switching to the parameters defined in Eqs.~4.20!, we obtain

b t52t«2t2
3k2112ks22s~3119s!2r~3137s!

64psA21r/sAr12s2k2
,

~4.26a!

bk5t
A21r/s~k21!~r1s2k2!

16pAr12s2k2
, ~4.26b!
7-15
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br5t
A21r/s

32pAr12s2k2
$2k2~12r!12r2

24ks1s21r~4s22!%, ~4.26c!

bs5t
A21r/ss~2214k22k21s!

32pAr12s2k2
. ~4.26d!

For solving the RGE, we introduce the characteristics

,
]m̄~, !

],
5m̄, m̄~1!5m, ~4.27a!

,
]

],
ln Z̄~, !5g„ t̄ ~, !,k̄~, !,s̄~, !,r̄~, !…, Z̄~1!51,

~4.27b!

,
]

],
t̄~, !5b t„ t̄ ~, !,k̄~, !,s̄~, !,r̄~, !…, t̄ ~1!5t,

~4.27c!

,
]

],
k̄~, !5bk„ t̄ ~, !,k̄~, !,s̄~, !,r̄~, !…, k̄~1!5k,

~4.27d!

,
]

],
r̄~, !5br„ t̄ ~, !,k̄~, !,s̄~, !,r̄~, !…, r̄~1!5r,

~4.27e!

,
]

],
s̄~, !5bs„ t̄ ~, !,k̄~, !,s̄~, !,r̄~, !…, s̄~1!5s.

~4.27f!

In contrast to the CSE model, we have to look for fix
points in a four-dimensional parameter space. We find
the quadruple of coupling constants„ t̄ (,),k̄(,),r̄(,),s̄(,)…
flows to the IR stable fixed point

~ t* ,k* ,r* ,s* !5S 64

59
A6p«,1,1,0D . ~4.28!
02180
at

This fixed point is characterized byC2 /C15k* 51 and
C3 /C15r* 51. It turns out that the leading scaling behavi
of physical quantities depends not only on the fixed point
also on the approach to the fixed point described by
dangerously irrelevant variables. Paths to the fixed poin
decay quickly to the line described by

k̄~, !2k* 5~a/211/4!s̄~, ! ~4.29a!

and

r̄~, !2r* 5as̄~, ! ~4.29b!

for small ,, wherea is an arbitrary constant. In addition t
the stable fixed point, there is the unstable Gaussian fi
point t* 50 and there are two unstable fixed lines which c
be parametrized as„t(s),k(s),r(s),s… with

t~s!5
64p«A222A2s13s

313623320s11521s2 $56&1124As139&s%,

~4.30a!

k~s!512As/2, ~4.30b!

r~s!512A2s2s/2, ~4.30c!

and

t~s!5
64p«A212A2s13s

313623320s11521s2 $56&2124As139&s%,

~4.31a!

k~s!511As/2, ~4.31b!

r~s!511A2s2s/2. ~4.31c!

With the help of the characteristics, a formal solution
the RGE is easily obtained,
G~M ,N!~$q' ,qd%;t,k,r,s,m!5Z̄~, !2~M11!/2G~M ,N!
„$q' ,Z̄~, !21/2qd%; t̄ ~, !,k̄~, !,r̄~, !,s̄~, !,m,…. ~4.32!

Dimensional analysis gives

G~M ,N!~$q' ,qd%,t,k,r,s,m!5m2~d11!1dM1~d11!NG~M ,N!S H q'

m
,

qd

m2J ;t,k,r,s,1D . ~4.33!

Equation~4.32! in conjunction with Eq.~4.33! finally reveals the scaling behavior of the vertex functions,
7-16
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G~M ,N!~$q' ,qd%;t,k,r,s,m!

5~m, !2~d11!1dM1~d11!NZ̄~, !2~M11!/2G~M ,N!S H q'

m,
,

qd

~m, !2Z̄~, !1/2J ; t̄ ~, !,k̄~, !,r̄~, !,s̄~, !,m, D . ~4.34!

4. Scaling 2: Physical quantities

Now we switch back from the convenient scaled variables that we used in our calculations to the original variables i
we formulated our Hamiltonian~4.10!. Once more, we mark rescaled variables as well as vertex functions of the res
variables with hats. Recalling our manipulations leading to Eq.~4.12!, we write

T̂5AC4

K3 T, t̂5AC4

K3 t, ~4.35a!

q̂d5
C4

K
qd , ûa5

C4

K
ua , ûd5AC4

K
ud . ~4.35b!

The relation between the physical vertex functions and the vertex functions in the scaled variables is given by

G~M ,N!~$q' ,qd%;t,k,s,r,m!5KM13N/227/2C4
3/22N/2Ĝ~M ,N!~$q' ,q̂d%; t̂ ,k,s,r,m!. ~4.36!

Equation~4.36! in conjunction with Eq.~4.34! gives

G~M ,N!~$q' ,qd%;t,k,s,r,m!5
1

T
KM13N/222C4

12N/2L'
2~d21!2dM2~d11!N,2~d11!1dM1~d11!N@ t̄ ~, !/t#21Z̄~, !2~M11!/2

3F̂~M ,N!S H L'q'

,
,

Ldqd

Z̄~, !1/2,2J ;AC4

K3
t̄~, !,k̄~, !,s̄~, !,r̄~, !,1D , ~4.37!
te
q

-
ith

th
n-

et of
th

er
where we introduced the susceptibilities

F̂~M ,N!5 t̂ Ĝ~M ,N! ~4.38!

and where we switched fromm to the length scales

L'5m21, ~4.39a!

Ld5AC4

K
m225AC4

K
L'

2 . ~4.39b!

The behavior of the elastic moduli is now easily extrac
from the two-point vertex functions. Upon specializing E
~4.37! to N52 andM50, etc., we obtain

K~, !5K,2«Z̄~, !21/2@ t̄ ~, !/t#21, ~4.40a!

C1~, !5C1,2«Z̄~, !23/2@ t̄ ~, !/t#21@s̄~, !/s#21,
~4.40b!

C4~, !5C4,2«Z̄~, !23/2@ t̄ ~, !/t#21, ~4.40c!

C2~, !;C3~, !;C1~, !. ~4.40d!

For C1 , C2 , andC3 we can draw our final conclusions with
out solving the characteristics. Taking the derivative w
respect to the flow parameter, we find, for example,
02180
d
.

,
]

],
C1~, !52«2

3

2
g2

b t

t
2

bs

s
52gv . ~4.41!

Upon expressinggv in terms ofs, r, andk and by taking
into account Eqs.~4.29!, we see that

gv;As ~4.42!

in the vicinity of the IR-stable fixed point. Hence,gv van-
ishes in the scaling limit. Consequently,C1 , C2 , andC3 are
normal.

5. Behavior of the elastic constants for dË3

For d,3, we can assign physical content to the leng
scaleL' by exploiting the definition of the rescaled dime
sionless temperaturet̂ . This provides us with

L'5S K3/2t

C4
1/2TD 1/«

~4.43!

as the transversal length scale associated with the ons
scaling behavior. The corresponding longitudinal leng
scale can be inferred from Eq.~4.39b!.

As solutions to the characteristics, we obtain the pow
laws
7-17
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Z̄~, !;,g* , ~4.44a!

s̄~, !;s,w, ~4.44b!

where

g* 5g~ t* ,k* ,r* ,s* !5242«/59 ~4.44c!

and

w54«/59 ~4.44d!

is a Wegner exponent corresponding to the smallest eig
value of the Hessian at the stable fixed point.

Equation~4.37! in conjunction with the power-law behav
ior of Z̄(,) and s̄(,)/s along with Eqs.~4.43! and ~4.39b!
for the crossover lengthsL' andLd provide us with a com-
plete scaling picture of our vertex functions ind,3. This
picture is summarized in Eqs.~2.13! with

hK5«1g* /2538«/59, ~4.45a!

hC5«13g* /254«/595w, ~4.45b!

f521g* /252221«/59. ~4.45c!

Finally, the power laws~4.44! along with Eqs.~4.40! result
in the scaling forms for the elastic constants summarize
Eqs. ~2.16! and ~2.17!. Note thatK diverges at long length
scales.C4 , on the other hand, vanishes in this regime.

6. Logarithmic behavior in dÄ3

In three dimensions, the solutions to the characteris
that we need to determine the behavior of the elastic mo
are given at leading order by

t̄ ~, !/t5F12
7A6t

64p
ln~, !G21

~4.46!

and Z̄(,);@ t̄ (,)/t#242/59. Inserting these logarithmic solu
tions into Eqs.~4.40!, we obtain

K~q'!;KF12
7A6t

64p
ln~L'uq'u!G38/59

, ~4.47a!

C4~q'!;C4F12
7A6t

64p
ln~L'uq'u!G24/59

. ~4.47b!

Using s̄(,);@ t̄ (,)/t#4/59 one can check explicitly thatC1 ,
C2 , and C3 are normal.K and C4 diverge and vanish, re
spectively, forL'uq'u→0. Note that Eqs.~4.47! imply the
existence of the crossover-length scale

j'5L' expS 64p

7A6t
D 5L' expS 64pAK3

7A6C4T
D . ~4.48!
02180
n-

in

s
li

7. Poisson ratios

Since the momentum dependence of the anomalous e
tic moduli is logarithmic in three dimensions, it will be dif
ficult to observe the anomalous elasticity of NE’s upon m
suring these moduli directly. However, our analysis reve
the existence of several Poisson ratios of the elastic mo
that should be conveniently accessible by experiments.

The IR stable fixed-point values ofk, r, and s directly
imply the Poisson ratiosC2 /C151, C3 /C151, andC4 /C1
50. Remarkably, not only the stable fixed point but also
approach to it contains information on relations between
elastic moduli. From Eqs.~4.29! it follows that 2k2r21
5s/2 for small flow parameter,. Switching back to the
original elastic constants, we find the Poisson ratio

2C22C32C1

C4
5

1

2
. ~4.49!

Note that Eq.~4.49! implies the Poisson ratiom/mL58
found by Xing and Radzihovsky@24#, wheremL and m are
longitudinal and transverse shear moduli, respectively@32#.

8. Semisoft elasticity

So far we considered soft elastic NE’s synthesized
cross-linking in the isotropic phase. If a NE is cross-linked
the nematic phase, a memory of the anisotropy at the tim
cross-linking is locked in, or in other words, the rotation
symmetry in the reference space is broken. The simplest
of modeling this symmetry breaking is by introducing a
aligning external field, or more precisely, an aligning ext
nal stress. In this spirit we supplement the elastic ene
~4.1! with the term stated in Eq.~2.11!. Next, we switch to
the relative strain~4.2! and exploit a Ward identity that cor
responds at zero-loop order to

h52sb5 . ~4.50!

By virtue of this Ward identity, which is derived Appendix B
we can study the effects of the external aligning stress
studying the RG behavior ofb5 featured in Eq.~4.3!.

Before embarking on a perturbation calculation, we rec
the rescalings that led from Eq.~4.3! to our final NE Hamil-
tonian~4.12!. By applying these rescalings to Eq.~4.3! with
now b55h/s instead ofb550, by incorporating bending and
by dropping irrelevant terms, we derive the model Ham
tonian

He

T
5

H
T

1
e

2T E dd'x'E dxd]aud]aud , ~4.51!

with H/T given by Eq.~4.12!. The coupling constante is
defined as

e5
h

4K~122s!
. ~4.52!

Being interested in semisoft behavior, we assume thath is
small. Hence, we treate as a relevant perturbation.
7-18
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Our diagrammatic calculation proceeds in much the sa
way as the one outlined in Sec. III B 7. The only difference
that here we have to replace the vertices~3.13! by the NE
vertices~4.14!. Expansion of the diagrams to first order ine
leads to an« pole in Gdd

(0,2) that is proportional toeq'
2 . We

remove the divergence by letting

e→e̊5ZT
21Zee ~4.53!

with

Ze512t
A21 f ~31 f 22g1v!

16p«A2g21~21 f !v
. ~4.54!

The appropriate RGE here reads

FDm1ec]e2S M1
N

2 DgGG~M ,N!~$q' ,qd%;t,k,r,s,e,m!

50, ~4.55!

where it is understood that the vertex functions are expan
to first order ine. The RG differential operatorDm is stated
in Eq. ~4.22! and

c5m]m ln eu05gT2ge . ~4.56!

In d,3, the characteristic fore,

,
]

],
ln ē~, !5c„ t̄ ~, !,k̄~, !,r̄~, !,s̄~, !…, ē~1!5e,

~4.57!

has the fixed-point solution

ē~, !;e,c* , ~4.58!

with c* 5c(t* ,k* ,r* ,s* )518«/59. Supplementing the so
lution to the RGE~4.55! with a dimensional analysis an
switching to original variables yields for the physical vert
function Gdd

(0,2) the scaling form

Gdd
~0,2!~q' ,qd ;e!

5
K

T
L'

24,42hKF̂dd
~0,2!S L'q'

,
,
Ldqd

,f ;
L'

2 e

,1/nhD ,

~4.59!

where we have simplified the notation by dropping seve
arguments and where

nh5~22c* !2151/219«/108. ~4.60!

We emphasize the different roles played byC5 andh in the
CSE model and in NE’s, respectively.C5 corresponds to a
temperature whereash corresponds to an external magne
field. Nevertheless, it is useful to introduce a length scal

jh5L'~eL'
2 !2nh;h2nh ~4.61!
02180
e

ed

l

at this point. In the limitjhuq'u!1, we obtain upon choosing
,5(jh /L')2nh that

Gdd
~0,2!~q' ,qd ;e!

;
1

T H KL
'

2hKjh
2~22hK!q'

2 ;hghq'
2 if qd50

C1qd
2 if q'50

,

~4.62!

where

gh5nh~22hK!51210«/59. ~4.63!

In the limit jhuq'u@1, corresponding to the limith→0, we
retrieve essentially the scaling form that we had forh50.
Now, however, there is an additional correction term th
vanishes as (jhuq'u)21/nh. Physically, this correction term
modifies the behavior from soft to semisoft. For a review
the complete scaling results, see Eqs.~2.13!, ~2.16!, and
~2.17!.

V. CONCLUDING REMARKS

In this paper, we have explored the anomalous elasti
of two models for soft uniaxial elastomers, both of which a
characterized by the vanishing of the shear modulusC5 for
shears in planes containing the anisotropy axis. The
model, which we refer to as a critically soft elastomer~CSE!,
describes a uniaxial system at a simplified critical point se
rating a true uniaxial elastic phase characterized by five e
tic moduli and a lower-symmetry phase produced by she
ing the uniaxial solid. The second model describes nem
elastomers~NE’s! formed via spontaneous symmetry brea
ing from an anisotropic state. In the CSE model, a bend
modulus diverges, and three of the four elastic moduli van
as power laws in wave number at long wavelength bel
spatial dimensiond53 and logarithmically atd53. In the
NE model, the relevant bending modulus diverges, but o
one elastic constant exhibits singular behavior. In both m
els, we studied the effect of turning on couplings that ta
them from soft to true uniaxial elastomers. These fields
like temperature or external fields at a thermal critical poi
respectively, and introduce coherence lengths that diverg
a power law as the fully soft state is approached.

The logarithmic corrections that we predict will be ve
difficult to measure. Our universal Poisson ratios, on
other hand, should be observable in experiments on th
dimensional soft elastomers. The anomalous elasticity
be more important in two than in three dimensions. It wou
be interesting to find a two-dimensional realization of ne
atic elastomers, say in a cross-linked membrane confined
substrate which inhibits height fluctuations@33#. Another
two-dimensional system belonging to the NE universa
class would be a tethered nematic membrane that orients
plane perpendicular to an external aligning field.

Our analysis exemplifies the power and the beauty of
renormalization group. The renormalization group hand
the rotational invariances of nematic elastomers in two d
tinct spaces quite naturally. Though the constraints impo
7-19
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by these invariances lead to almost baroquely complica
formulas at intermediate stages of the analysis, our final
sults have a surprisingly clear and simple stature.
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APPENDIX A: WARD IDENTITIES FOR CRITICALLY
SOFT ELASTOMERS

By virtue of the mixing invariance discussed at the end
Sec. III A, there exist several Ward identities for CSE’s.
this appendix, we derive these identities.

To facilitate our derivation, we introduce external fiel
via

H→Hh5H2E ddx$haua1hdud%, ~A1!

where*ddx5*dd'x'*dxd . As usual, the external fields a
low us to exploit the free energy

F@ha ,hd#52T ln Z@ha ,hd#, ~A2!

where the partition function is given by

Z@ha ,hd#5E DuaDud exp~2Hh /T!, ~A3!

as a generating function for the order parameters

ma~x!5^ud~x!&5
dF

dha~x!
, ~A4!

md~x!5^ud~x!&5
dF

dhd~x!
. ~A5!

As a consequence of the mixing invariance, the free ene
obeys the relation

F@ha ,hd#5uaE ddx xahd1F@ha ,hd8#, ~A6!

wherehd85hd1uaha . Because the left-hand side of Eq.~A6!
is independent of theua , we obtain

La5
]F

]ua
5E ddx xahd~x!1E ddx md~x!ha~x!50.

~A7!
02180
d
e-

e-

f

y

Now we adopt the usual strategy and take various der
tives. We start with

d2La

dmd~y!dmb~z!
5E ddx xa

d2hd~x!

dmd~y!dmb~z!
1

dha~y!

dmb~z!

1E ddx md~x!
d2ha~x!

dmd~y!dmb~z!
50.

~A8!

In equilibrium, the order parameters vanish for vanishi
external fields,ha5hd50. Hence, we get the Ward identity

2E ddx xaGddb
~1,2!~x,y,z!5Gab

~2,0!~y,z!. ~A9!

In Fourier space, identity~A9! takes the form

2 i
]

]pa
~1! Gddb

~1,2!~p~1!,p~2!,p~3!!U
p~1!50

5Gab
~2,0!~p~2!,p~3!!

~A10!

with p(2)1p(3)50. Another Ward identity can be found b
taking the second functional derivative ofLa with respect to
md(y) andmd(z). This leads in Fourier space to

2 i
]

]pa
~1! Gddd

~0,3!~p~1!,p~2!,p~3!!U
p~1!50

5Gad
~1,1!~p~2!,p~3!!1Gad

~1,1!~p~3!,p~2!!. ~A11!

An identity for the four-point vertex functionGdddd
(0,4) follows

in a similar manner upon taking a third-order functional d
rivative of La with respect to, say,md(y), md(z), and
md(w). The result can be stated as

2 i
]

]pa
~1! Gdddd

~0,4! ~p~1!,p~2!,p~3!,p~4!!U
p~1!50

5Gadd
~1,2!~p~2!,p~3!,p~4!!1Gadd

~1,2!~p~4!,p~2!,p~3!!

1Gadd
~1,2!~p~3!,p~4!,p~2!!. ~A12!

Of course, our Ward identities should hold to arbitra
order in perturbation theory. At zero loop order, the cons
tency of the Ward identities can be checked without mu
effort. We carried out this check and found our identiti
confirmed.

APPENDIX B: WARD IDENTITIES FOR NEMATIC
ELASTOMERS I

Here we derive the Ward identities that follow from th
reference space rotation invariance of the NE Hamilton
~4.1!. One of these Ward identities can be viewed as
origin of the soft elasticity characterizing NE’s cross-linke
in the isotropic phase. In addition, we consider semisoft N
where the reference space rotation invariance is broken b
aligning external stress.
7-20
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1. The soft case

To make our arguments more intuitive, we work direc
in d53 dimensions. Without loss of generality, we assu
rotations about thex axis, which we parametrize by a rota
tion angleu. For smallu, these rotations are described by t
orthogonal matrix

O= R5S 1 0 0

0 1 u

0 2u 1
D . ~B1!

Such a rotation takes the strainu= to u= 85O= Ru=O= R
T , whereO= R

T

is the transpose ofO= R . The relative strainw= 5u=2u= 0 is taken
by the rotation to

w= 85O= Ru= 0O= R
T2u= 01O= Rw= O= R

T . ~B2!

We introduce an external symmetric stresss= into our
model via

H→Hs5H2E ddx s i j wi j , ~B3!

whereH is the elastic energy of Eq.~4.3! supplemented with
the relevant bending term. Then, the free energy

F@s= #52T ln Z@s= #, ~B4!

with the partition function

Z@s= #5E Dw= exp~2Hs /T!, ~B5!

is a generating function for the tensor order parameter

mi j ~x!5^wi j ~x!&5
dF

ds i j ~x!
. ~B6!

Owing to the rotation invariance of the Hamiltonian~4.3!
without external stress, the free energy satisfies

F@s= #52usE ddx@s231s32#1F@s= 8#, ~B7!

with the elements of the symmetric tensors= 8 given by

s118 5s11, ~B8a!

s128 5s122us13, ~B8b!

s138 5s131us12, ~B8c!

s228 5s222u~s231s32!, ~B8d!

s238 5s231u~s222s33!, ~B8e!

s338 5s331u~s231s32!. ~B8f!

Evidently, the left-hand side of the identity~B7! is inde-
pendent of the rotation angleu. Hence, the quantity
02180
e

L5
]F

]u
5E ddx$2sG23~x!1m12G13~x!2m13G12~x!

22m23@G22~x!2G33~x!#2@m33~x!2m22~x!#G23~x!%

~B9!

vanishes identically. In this expression, we used the facts
mi j (x) and s i j are symmetric tensors and thatG i j (x)
52dF/dmi j (x) for iÞ j ~we use only i , j ) and G i i (x)
5dF/dmii (x) for all i ~no Einstein convention!. Now we are
in the position to extract the sought-after Ward identities s
ply by taking functional derivatives ofL with respect to the
order parameter. For example, differentiating with respec
m23(y) and settingmi j 50, we obtain the Ward identity,

dL

dm23~y!
52sE ddx G2323~x,y!22@G22~y!2G33~y!#50,

~B10!

which in Fourier space is

sG2323~0,0!12@G22~0!2G33~0!#50. ~B11!

This Ward identity is particularly important because it is t
origin of the soft elasticity of NE’s. Taking the appropria
derivatives of the free energy in Eq.~4.3!, it is straightfor-
ward to show thatG2323(0,0)52b5 , G33(0,0)5a1 , and
G22(0,0)5a2 and thus that Eq.~B11! reduces relation~4.4a!
at zero-loop order.

The derivation of the other Ward identities that general
the remaining relations stated in Eqs.~4.4! is a similar exer-
cise. We restrict ourselves to stating the final results

2sG232311~0,2p,p!22G2211~2p,p!12G3311~2p,p!50,

~B12a!

2sG232333~0,2p,p!22G2233~2p,p!12G3333~2p,p!

2G2323~2p,p!50, ~B12b!

2sG231312~0,2p,p!22G1212~2p,p!12G1313~2p,p!50,

~B12c!

2sG23231313~0,p~1!,p~2!,p~3!!22G221313~p~1!,p~2!,p~3!!

12G331313~p~1!,p~2!,p~3!!22G122313~p~2!,p~1!,p~3!!

2G122313~p~3!,p~1!,p~2!!50. ~B12d!

2. The semisoft case

Now we consider semisoft NE’s modeled by the elas
energy ~4.1! supplemented with the explicit uniaxial term
~2.11!. The aligning stressh breaks the reference space rot
tion symmetry in much the same way as the stresss= utilized
in Appendix B 1. Thus, we basically just have to repeat
steps carried out in Appendix B 1 with

Hs→Hh,s5Hh2E ddx s i j wi j 5H2E ddx sh,i j wi j ,

~B13!
7-21
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where

sh,i j 5s i j 1
h

d
~d i1d j 11d i2d j 2!2

~d21!h

d
d i3d j 3 .

~B14!

This analysis leads in Fourier space to the Ward identity

sG2323~0,0!2h50 ~B15!

provided that the equations of stateG22(0)50 and G33(0)
50 are satisfied. At zero-loop level, the identity~B15! re-
duced to the relation betweenh andb5 stated in Eq.~4.50!.

APPENDIX C: WARD IDENTITIES FOR NEMATIC
ELASTOMERS II

The mixing invariance of NE’s leads to Ward identitie
analogous to those for CSE’s derived in Appendix A. Sin
the derivation of the two sets of identities is similar a
Appendix A is fairly detailed, we restrict ourselves here
mention differences in the derivations and to list results.

Introducing external fields via the step~A1!, we find that
the free energy of NE’s satisfies the identity

F@ha~x!,hd~x!#52uaE ddx xahd~x!1F@ha~xc

1ucxd ,xd!,hd~xc1ucxd ,xd!1uaha~x!#.

~C1!

Thus, the quantityLa5]F/]ua obeys the equation

La52E ddx xahd~x!1E ddx md~x!ha~x!

1E ddx mc~x!
]hc~x!

]xa
xd1E ddx md~x!

]hd~x!

]xa
xd50.

~C2!

By taking the appropriate functional derivatives with resp
to the order parameter, we obtain the Ward identities

i
]

]pa
~1! Gddb

~1,2!~p~1!,p~2!,p~3!!U
p~1!50

5Gab
~2,0!~p~2!,p~3!!2

]

]pd
~2! Gbd

~1,1!~p~2!,p~3!!pa
~2!

2
]

]pd
~3! Gbd

~1,1!~p~2!,p~3!!pa
~3! , ~C3a!

i
]

]pa
~1! Gddd

~0,3!~p~1!,p~2!,p~3!!U
p~1!50

5Gad
~1,1!~p~2!,p~3!!1Gad

~1,1!~p~3!,p~2!!

2
]

]pd
~2! Gdd

~0,2!~p~2!,p~3!!pa
~2!
02180
e

t

2
]

]pd
~3! Gdd

~0,2!~p~2!,p~3!!pa
~3! , ~C3b!

i
]

]pa
~1! Gdddd

~0,4! ~p~1!,p~2!,p~3!,p~4!!U
p~1!50

5Gadd
~1,2!~p~2!,p~3!,p~4!!1Gadd

~1,2!~p~3!,p~2!,p~4!!

1Gadd
~1,2!~p~4!,p~2!,p~3!!

2
]

]pd
~2! Gddd

~0,3!~p~2!,p~3!,p~4!!pa
~2!

2
]

]pd
~3! Gddd

~0,3!~p~2!,p~3!,p~4!!pa
~3!

2
]

]pd
~4! Gddd

~0,3!~p~2!,p~3!,p~4!!pa
~4! . ~C3c!

APPENDIX D: ALTERNATIVE RENORMALIZATION
SCHEME FOR NEMATIC ELASTOMERS

Our renormalization scheme~4.16!, which involves a
reparametrization of the coordinatexd , follows closely the
approach developed by Grinstein and Pelcovitz@22#. Though
this approach has been established for more than two
cades now, it is not clear how the known strategies of pr
ing renormalizability apply to it. In this appendix, we briefl
present an alternative renormalization scheme for NE’s
does not entail a reparametrization ofxd . We demonstrate
that the alternative formulation leads exactly to the sa
results as our original approach.

Let us revisit our Hamiltonian~4.10! as a starting point.
To reduce the number of scaling variables, we setT5ŤK.
This step yields

H
T

5
1

2Ť
E dd'x'E dxd$v̌vdd

2

1~¹'
2 ud!212ǧvddvaa1 f̌ vaa

2 12ȟvab
2 %, ~D1!

wherev̌5C1 /K, ǧ5C2 /K, f̌ 5C3 /K, andȟ5C4 /K. Note
that ȟ has no counterpart in Eq.~4.12! and that we thus have
an additional parameter in comparison to Eq.~4.12!. Due to
this additional parameter, the Hamiltonian~D1! has an addi-
tional invariance, viz., it is invariant from under the rescali
xd→b21/2xd , ud→b1/2ud , ua→b1ua , Ť→b1/2Ť, v̌

→b21v̌, ǧ→b21ǧ, f̌→b21 f̌ , andȟ→b21ȟ ~b rescaling!.
This scaling invariance implies that the vertex functio
obey the scaling from

G~M ,N!~$q' ,qd%;Ť,v̌,ǧ, f̌ ,ȟ!

5b~M11!/2G~M ,N!S $q' ,b1/2qd%;b
1/2Ť,

v̌

b
,

ǧ

b
,

f̌

b
,

ȟ

b
D .

~D2!
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Equation ~D2! suggests to introduce composite paramet
that are invariant under theb rescaling. Among various pos
sibilities we choose

t5m2«ȟ1/2Ť5m2«TAC4 /K3, ~D3a!

v5v̌/ȟ5C1 /C4 , ~D3b!

g5ǧ/ȟ5C2 /C4 , ~D3c!

f 5 f̌ /ȟ5C3 /C4 . ~D3d!

Note that these composite parameters are identical to
parameters we introduced by switching from Eq.~4.10! to
Eq. ~4.12!.

After this prelude, we specify our alternative renormaliz
tion scheme,

Ť→ T̊̌5ZTŤ, ~D4a!

v̌→ v̊̌5ZT
21Zvv̌, ~D4b!

ǧ→ g̊̌5ZT
21Zgǧ, ~D4c!

f̌→ f̊̌ 5ZT
21Zhf̌ , ~D4d!
d

o

l
in
ha
in
ar

02180
s

he

-

ȟ→ h̊̌5ZT
21Zhȟ. ~D4e!

With this scheme

H
T

→ 1

2Ť
E dd'x'E dxd$Zvv̌vdd

2 1ZT~“'
2 ud!2

12Zgǧuddvaa1Zf f̌ vaa
2 12Zhȟvab

2 %. ~D5!

Next we derive a RGE for the vertex functions. Exploiting
usual the independence of the bare theory ofm and upon
switching viat, v, g, and f to the benign parameterst, k, r,
ands, we get

@m]m1zȟ] ȟ1b t] t1bk]k1br]r1bs]s#

3G~M ,N!~$q' ,qd%;t,k,r,s,ȟ,m!50, ~D6!

where

z5m]m ln ȟu05gT2gh ~D7!

and where the Wilsonb andg functions are defined as usua
By solving the RGE~D6!, supplementing the solution with
dimensional analysis, and by exploiting Eq.~D2! with the
choiceb5ȟ for the parameter of theb rescaling, we find
G~M ,N!~$q' ,qd%;t,k,r,s,ȟ,m!5 h̄̌~, !~M11!/2G~M ,N!S H q'

m,
,
h̄̌~, !1/2qd

~m, !2 J ; t̄ ~, !,k̄~, !,r̄~, !,s̄~, !,1,m, D . ~D8!
yn-
p-
in-

The
ia-

he
is

or

ia-

of
Now we take a closer look at the RG flow ofȟ. Comparing
the renormalized Hamiltonians~D5! and~4.17!, we learn that

Zh5ZTZ, ~D9!

provided the left- and the right-hand sides are expresse
terms of the same variables, here in particulart, k, r, ands.
Using Eq.~D7! and the definition of the Wilsong functions,
we find

z52g. ~D10!

From the corresponding characteristics, we consequently
tain

h̄̌~, !;Z̄~, !21. ~D11!

Collecting Eqs.~D8! and ~D10!, we learn that our origina
and our alternative formulation lead to equivalent scal
results for the vertex functions. Of course, all results t
follow from the scaling forms for the vertex functions,
particular the anomalous behavior of the elastic moduli,
identical for both approaches.
in

b-

g
t

e

APPENDIX E: CALCULATION OF FEYNMAN DIAGRAMS

Here we give some details on the calculation of the Fe
man diagrams listed in Figs. 1–3. The first part of this a
pendix contains two representative examples. All the rema
ing diagrams may then be computed by similar means.
second part features two parameter integrals. All two-leg d
grams can be expressed in terms of these integrals.

1. Examples

As a first example, we consider the first diagram in t
first row of Fig. 1. For the sake of argument, we refer to th
diagram asAdd . Regarding CSE’s, this diagram stands f
the mathematical formula

Add5qd
2 g2

2T2 E
k
ka~ka1qa!kb~kb1qb!Gdd~k!Gdd~k1q!,

~E1!

whereq is an external momentum running trough the d
gram. *k is an abbreviation for 1/(2p)d *dd'k' *dkd .
Simple power counting reveals that the superficial degree
7-23
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divergence ofAdd is zero. Hence, it is sufficient to evalua
the diagram at vanishing external momentum. Forq50, Add
reduces to

Add5qd
2 g2

2
B2M42

~1! , ~E2!

with M42
(1) being a specification of the parameter integ

Mln
(1) defined in Eq.~E7!. Exploiting the result~E11!, we

obtain

Add5qd
2g2

B1/2

A1/2

t2«/4

16p«
~E3!

as the final result forAdd . Regarding NE’s, we simply hav
to replace theg2 stemming from the vertices by (v2g)2.

As a second example, we illustrate the computation of
last diagram in the row line of Fig. 1. Let us call this diagra
Cdd . In the case of the CSE model, it visualized the form

Cdd5
g2

T2 E
k
kd

2@q'•~q'1k'!#2Gdd~k!Gdd~k1q!.

~E4!

The superficial degree of divergence of this diagram is
Hence an evaluation atq50 is not sufficient and we rathe
have to expandCdd in powers of the external momentum
Using the parameter integralMln

(2) defined in Eq.~E12!, this
expansion can be written as

Cdd5q'
4 g2B2$M02

~2!2 9
2 BM43

~2!12B2M86
~2!%. ~E5!

All the other terms in this expansion turn out to be U
convergent. Using Eq.~E13!, the final result forCdd is now
readily found to be

Cdd5q'
4 g2

B3/2

A3/2

t2«/4

64p«
. ~E6!

Again, one simply has to replace theg2 stemming from the
vertices by (v2g)2 if one is interested in NE’s.

2. Parameter integrals

Many of the two-leg diagrams can be expressed in te
of the parameter integral

Mln
~1!5E

k

k'
l

~Bt1Akd
21Bk'

4 !n . ~E7!

The calculation of this integral can be simplified by rescal
the momenta,
m

-

02180
l

e

.

s

Mln
~1!5A21/2B2~d1 l 21!/4E

k

k'
l

~Bt1kd
21k'

4 !n . ~E8!

Next, we employ the Schwinger representation,

Mln
~1!5

A21/2B2~d1 l 21!/4

~2p!dG~n!
E

0

`

ds sn21 exp~2sBt!

3E dd'k'k'
l exp~2sk'

4 !E dkd exp~2skd
2!.

~E9!
Now the momentum integrations are straightforward. We
tain

Mln
~1!5

A21/2B2~d1 l 21!/4GS d1 l 21

4 D
2~4p!d/2G~n!GS d21

2 D
3E

0

`

dsexp~2sBt!s211@~4n2 l 2d21!/4#.

~E10!
Carrying out the remaining integration over the Schwing
parameters gives finally

Mln
~1!5

A21/2B2~2n21!/2GS 21 l 2«

4 D
2~4p!d/2G~n!GS 22«

2 D
3GS 4n2 l 241«

4 D t2~4n2 l 241«!/4. ~E11!

In addition toMln
(1) , it turns out to be convenient to intro

duce a second parameter integral, viz.,

Mln
~2!5E

k

kd
2k'

l

~Bt1Akd
21Bk'

4 !n . ~E12!

This integral can be calculated by the same means asM ln
(1) .

We obtain the result

Mln
~2!5

A23/2B2~2n23!/2GS 21 l 2«

4 D
4~4p!d/2G~n!GS 22«

2 D
3GS 4n2 l 281«

4 D t2~4n2 l 281«!/4. ~E13!
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